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Abstract

The NIST Building and Fire Research Laboratory (BFRL) has undertaken a project concerning the
effect of fire on high strength concrete. Heating concrete to sufficiently high temperatures results
in water of hydration being driven off, with a resultant irreversible loss of concrete strength. In
addition, it has been observed that rapid heating of high strength concrete can result in spalling of
the concrete. Computer models for prediction of temperature and pore pressure distributions in
heated concrete typically include consideration of (1) mass transfer of air and water by diffusion and
by forced convection, conversion of liquid water to vapor, and release of water of hydration and (2)
heat transfer by conduction, mass diffusion, and forced convection. In order to make valid
predictions, the computer models require reliable data as to the physical properties of the concrete.
Mass transport properties are being investigated by the Building Materials Division. Thermal
transport properties, the subject of this report, are being investigated by the Building Environment
Division. The present report addresses (1) identification of material properties critical to prediction
of heat and mass transfer in high strength concrete at high temperatures, (2) variation of the thermal
properties with temperature, pressure, and thermal history, (3) examination of correlations between
concrete composition and thermal properties, (4) identification of appropriate experimental
techniques for determination of the thermal properties of high strength concrete, (5) identification
of available equipment and testing services for carrying out such measurements, and (6) preliminary
design of special equipment that needs to be constructed for measurement of the thermal
conductivity of concrete.
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Nomenclature

The nomenclature list below is limited to those symbols that are used in the main body of this report.
The symbols used in Sections 2.1, 2.2, and 2.3 are not included, since the symbols used there, and
defined there, are those of the various investigators whose work is being cited and they are not used
elsewhere in this report. The symbols used for the various equations in Appendices A and B are not
included since they are defined as they are used in those appendices.

A relative mass [kg/kg] = [1] of water that would fill voids

B bulk modulus [Pa]

C  specific heat [J/kg'K] at constant pressure

C  sensible heat contribution to the specific heat [J/kgK]

D mass diffusivity [m?%s]
f volume fraction [m*/m’] = [1]

H  enthalpy [J/kg]

K permeability [m?]

¢ length [m]

m  dimensionless constant used in the Bruggeman mixture rule (Eq. (55)
m  mass flux [kg/m?*s]

n index of summation

p  partial pressure [Pa]

P pressure [Pa], porosity [m*/m’] = [1], or fraction of area or of length (Eq. (75))
g  heat flux [W/m?]

S source term [kg/m®:s] for creation of liquid or vapor

t time [s]

T temperature [K]

% volume fraction [m*/m’] = [1]

V. volume [m’]

W mass [kg]

X coordinate axis [m]

Greek

o coefficient of linear thermal expansion [m/m'K] =|[K]

B coefficient of volumetric thermal expansion [m™/m™K] = [K]

Y dimensionless constant in Harmathy’s form of Hamilton-Crosser mixture rule (Eqgs. (58)-(59))

xii



) mass diffusivity [kg/m-s-Pa] when the partial pressure gradient is the driving force; this
quantity is usually called “permeability” in the building research literature

AH, heat of reaction, or latent heat contribution to the specific heat [J/kg'K]
degree of conversion of a chemical reaction (0 < { < 1)

dimensionless constant used in the Hamilton-Crosser mixture rule (Eq. (57))
thermal diffusivity [m?%s]

thermal conductivity [W/m-K]

viscosity [kg/m-s]

moisture capacity [kg/kg] = [1]

3.14159265...

density [kg/m’]

d particular property of interest

€ 6 © 3 T > A 3 oy

mass fraction [kg/kg] = [1]

Subscripts

0 reference
1,2 component
c forced convection, cement, or continuous phase

d diffusion, or dispersed phase

[ component
m mass
n non-evaporable water

P at constant pressure
s saturation
u energy

w water

xiii



1. Introduction

The NIST Building and Fire Research Laboratory (BFRL) has undertaken several projects concerned
with the performance of high strength concrete. One of these projects concerns the effect of fire on
high strength concrete. Heating concrete to sufficiently high temperatures results in water of
hydration being driven off, with a resultant irreversible loss of concrete strength. In addition, it has
been observed that rapid heating of high strength concrete can result in spalling of the concrete. The
most common explanation for this phenomenon is that, because of the very low permeability of high
strength concrete, the moisture freed during dehydration (release of chemically bound water) cannot
escape quickly enough to prevent a large buildup in pore pressure, which “blows off” some of the
concrete. Another possible explanation for the observed spalling is that it occurs due to the large
thermal stresses encountered under fire conditions.

Several computer models have been developed to predict temperature and pore pressure distributions
in concrete exposed to simulated fire conditions. It probably will be necessary to develop a
companion computer program to predict spalling and strength loss. BFRL is examining such
computer programs to ascertain how reliably they can predict the overall response of high strength
concrete structures to fire conditions and, hopefully, can provide insights into possible spalling
prevention procedures.

The computer models for prediction of temperature and pore pressure distributions utilize an analysis
procedure that involves the strongly coupled heat and mass transfer within the concrete. Such models
typically include consideration of mass transfer of air and water by diffusion and by forced
convection, conversion of liquid water to vapor, and release of water of hydration and heat transfer
by conduction, mass diffusion, and forced convection with inclusion of the effects of the heat of
vaporization of water, the heat of dehydration, and the thermal capacity of the concrete. Regardless
of how good the computer programs are, in order to make valid predictions, they require reliable data
as to the physical properties of the concrete. Mass transport properties are being investigated by the
Building Materials Division. Thermal transport properties, the subject of this report, are being
investigated by the Building Environment Division.

The present report addresses (1) identification of material properties critical to prediction of heat
and mass transfer in high strength concrete at high temperatures, (2) variation of these properties
with temperature, pressure, and thermal history, (3) examination of correlations between concrete
composition and thermal properties, (4) identification of appropriate experimental techniques for
determination of the thermal properties of high strength concrete, (5) identification of available
equipment and testing services for carrying out such measurements, and (6) preliminary design of
special equipment that needs to be constructed for measurement of one or more thermal properties.

Section 2 of this report provides an overview of heat and mass transfer in porous media, identifies
the properties that are required in mathematical modeling of heat and mass transfer, and provides
the mass and energy conservation equations for several different models that have been previously
developed. Section 3 provides an overview of the available data on thermal properties of normal and
high strength concrete. Section 4 is a discussion of various correlations and procedures that might
be useful in prediction of the thermal properties of concrete. In Section 5, various experimental



techniques for determination of the needed thermal properties are described. The current availability
of apparatus and testing services, for these properties, is covered in Section 6, with the aim of
determining whether NIST has the appropriate capabilities, should procure or build appropriate
equipment, or should rely on testing at outside laboratories. It is concluded that no suitable
equipment for high temperature thermal conductivity measurements is available and that NIST needs
to develop such capability. Accordingly, Section 7 provides a preliminary design of the apparatus
that is proposed to be built for high temperature thermal conductivity measurements.



2. Modeling of Simultaneous Heat and Mass Transfer in Porous Media

When moisture is present, a very complex analysis can be required to deal with the coupled heat and
mass transfer that can occur, involving both liquid mass transfer and vapor mass transfer. In
general, moisture transport may include air-vapor mixture flow due to forced convection, free
convection, and infiltration through cracks and pores; vapor transport by diffusion; flow of liquid
due to diffusion, capillary action, or gravity; and the further complications associated with phase
changes due to condensation/evaporation, freezing/thawing, ablimation/sublimation, and
adsorption/desorption. There is a vast literature concerned with moisture transfer in materials and
with simultaneous heat and mass transfer. The literature concerning moisture flow in porous
materials encompasses the development of analytical/mathematical models, experimental studies,
combined experimental and analytical studies, field studies, and retrofit studies. Much theoretical
and experimental work has been done on the development of the theory of heat and mass transfer,
separately and together, in porous media. This work comes mainly from the fields of drying,
chemical processing, and building research, as well as from geophysics. However, in general it is
fair to state that consistent and universally reliable analytical approaches and test methods are yet
to be achieved for predicting combined heat and moisture transfer through porous media.

While analytical approaches differ, in general it is customary to write a set of coupled equations in
which there are three “currents,” such as heat flow, liquid water flow, and water vapor flow. Each
current has three components, driven by one of three “forces,” the temperature gradient, the gradient
in liquid water content, and the gradient in water vapor content. Thus there are nine coefficients
corresponding to the nine “conductivities” or “diffusivities” relating the currents and the forces. The
Onsager reciprocal relations reduce the number of independent coefficients to six. Depending upon
the application and the investigator, the moisture contents may be written in a variety of ways (e.g.,
mass or volume or relative humidity of moisture per mass or volume of medium). There also is a
variety of choices used for the currents and for the forces. A few of the approaches used are
discussed below.

The “apparent” thermal conductivity can be thought of as the ratio of the heat flux to the temperature
gradient, even though the heat flux is also affected by the gradients in liquid-phase and vapor-phase
moisture content. If moisture is migrating slowly, it can appear as if the apparent thermal
conductivity is constant. However as the local moisture content changes over time, the true thermal
conductivity will change, the heat transport associated with the fluxes of liquid and vapor will
change, and thus the apparent thermal conductivity will change.

Obviously, the extensive theoretical literature concerned with heat and mass transfer in porous media
cannot be reviewed in this report. Rather the approach taken is to (1) provide an overview of what
happens when a concrete wall is exposed to fire conditions (and define various terms), (2) use the
principles of irreversible thermodynamics to derive the much simpler problem of diffusion of a
single gas through a porous media, (3) summarize the theoretical results which three different
investigations found for the mass flux densities and energy flux density of coupled heat and moisture
transfer through a porous medium in the absence of convective mass transfer, and (4) summarize the
equations used in the Ahmed model (which does include convection) for predicting temperatures and
pore pressures in concrete exposed to fire conditions.




2.1 Overview of Heat and Mass Transfer in Concrete Exposed to Fire

For concrete, particularly at high temperature, one cannot predict heat transfer from just the
traditional thermal properties: thermal conductivity and volumetric specific heat (or, under some
conditions, one of these properties plus thermal diffusivity). Movement of air, water, and possibly
carbon dioxide through the concrete is accompanied by significant energy transfer, particularly
associated with the latent heat of water and the heats of hydration and dehydration. Because of the
high pore pressures that result when high-strength concrete is exposed to a fire, it is necessary to
consider forced convection as well as diffusion.

Consider a concrete slab that initially may have small temperature gradients, e.g., due to indoor-to-
outdoor temperature differences. Further, the extent of hydration of the concrete may not be uniform
throughout the structure. Because of the heat released during initial curing and drying out of the
concrete near one or both surfaces, there may be a higher amount of hydration in the middle of the
material than near the surfaces. The free moisture content also may vary throughout the concrete if
the different surfaces have been exposed to different humidities.

At the beginning of a fire, the temperature of the exposed side of the concrete slab will rise rapidly.
Free moisture, both liquid and vapor, will migrate toward the cold side of the concrete. Initially, this
moisture movement occurs by diffusion processes, where the driving force may be considered to be
the gradient in moisture content (commonly expressed as partial pressure, humidity, molar or mass
fraction, or molar or mass density). As the temperature of the fire-exposed side increases, any free
liquid water will boil off and migrate toward the colder side where some of it will condense. The
latent heat required to boil the liquid water will retard the rate of temperature rise at that location.
When water vapor is transported into a colder region, some of it is absorbed into the concrete, with
a heat of sorption that is approximately equal to the latent heat associated with condensation of free
water vapor into liquid, so that significant heat is released. As moisture moves into the slab and the
interior temperature rises towards 100 °C, portions of the slab may experience additional hydration
(conversion of free water to chemically bound water), with an attendant release of heat. When the
temperature of any portion of the concrete slab exceeds (roughly) the boiling point of water (at the
local pressure) some dehydration (release of chemically bound water) will begin to take place, with
an attendant absorption of heat. The dehydration reactions continue to temperatures in excess of
800 °C, with the most pronounced reaction being the dehydration of calcium hydroxide between 400
and 600 °C. The free water introduced into the concrete tries to diffuse toward the cold side.
However, high-strength concrete is not very permeable to water vapor and is even less permeable
(by, say, roughly two orders of magnitude) to liquid water. Thus the moisture cannot escape as
rapidly as it is being released and the pore pressure in the concrete will rise substantially.
Eventually, liquid water may fill the concrete pores at a location ahead of the temperature front,
creating a condition known as moisture clog, where the liquid water blocks the transfer of water
vapor toward the cold side of the slab. Under such conditions, the pore pressure will result in forced
convective mass transfer of superheated steam and air to the heated side of the slab.

For concrete with carbonate aggregates, the situation is further complicated. Between 660 and
980 °C, calcium carbonate breaks down into calcium oxide with the release of carbon dioxide.
Magnesium carbonate is similarly decomposed between 740 and 840 °C. Both reactions are



endothermic, thus absorbing heat and delaying temperature rise in the concrete. Quartz undergoes
a pronounced phase transformation, with an accompanying volume increase, at about 573 °C.

During temperature exposure of the concrete, its transport properties for both heat and mass can
change quite significantly due to differential thermal expansion opening up microcracks and changes
to the solid structure associated with chemical decomposition of the cement paste (dehydration) and
of any carbonate aggregates (conversion to oxides), both processes leading to less dense material and
thus lower thermal conductivity (and thermal diffusivity) and higher mass transport properties.

In the absence of mass transfer and chemical reactions, conductive heat transfer is described by

L i(ka_T) , M

P ot Ox Ox

where T'is temperature [K], ¢ is time [s], p, is the bulk density [kg/m?] of the medium, C'is specific
heat [J/kg-K], and A is thermal conductivity [W/m-K]. If there are no other mechanisms of heat
transfer and if A can be assumed to be constant, this equation can be replaced by
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where x = A/p_C, the ratio of thermal conductivity to volumetric specific heat, is known as the
thermal diffusivity [m’/s]. For a boundary value problem with prescribed surface temperatures as
functions of time, the interior temperatures versus time depend only on the thermal diffusivity and
it is not necessary to know the thermal conductivity or the specific heat separately.
(Correspondingly, in measuring thermal diffusivity it is only necessary to measure a geometrical
factor and a temperature variation with time; no power or energy measurements are required.) For
a boundary value problem with a prescribed heat flux or with a radiation boundary condition, the
temperature variation with time depends upon both thermal conductivity and thermal diffusivity (or
upon one of these properties plus the volumetric heat capacity).

When exothermic or endothermic chemical reactions, or phase changes in the solid concrete, take
place, it i1s preferable to replace Eq. (1) with

oH| or 0 oT
5 Beriiewd el B 3
or) , ot ox ox
where H is enthalpy [J/kg] and P is pressure [Pa]. If the degree of conversion from the reactants
into the products is designated by ¢ (0 < ¢ < 1), Eq. (3) can be rewritten as
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where C represents the sensible heat contribution to the specific heat at a given degree of
conversion, and the term involving AH,, the heat of reaction, is the latent heat contribution.
Sometimes the latent heat term is written as a heat source/sink term.

Turning now to mass transfer, diffusion is first considered. Assuming that Fick’s law for diffusion
holds, the mass flux due to a gradient in the density of the diffusing fluid is simply

. op
m; = “Da ) (3

where 71, is the mass flux [kg/m*s] due to diffusion, p is the density [kg/m®] of the fluid, and D is
the mass diffusivity [m*/s]. In the building research literature, for moisture transfer this equation
is often expressed in terms of partial pressures as

. op
m, = -0+,

d i (6)
where p is the partial pressure [Pa] and 0 is usually called the “permeability” [kg/m-s-Pa] rather than
being called a mass diffusivity. For diffusion of water vapor, a similar expression is often seen with
the driving force being the gradient in the humidity.

For forced convection through a porous medium, the mass flux is given approximately by
m, = ~K=—, ™

where P is the total pressure [Pa], p is the density [kg/m’] of the moving fluid, p is the viscosity
[kg/m-s] of the moving fluid, and K is the permeability [m?] of the medium for the particular fluid.
(Often experimental results will indicate that K is not really a constant but varies with the pressure
gradient so that a more complex expression may be required.)

The energy transport (heat flux) associated with a mass flux is simply
q =mH ®)

where H is the enthalpy of the moving fluid. The net energy content per unit volume (i.e., the
additional term to be included in the energy differential equation, Eq. (4)) is

. OH .( 0H) dT .~ 0T
m— =m| —| — =mC— , 9)
ox oT ) , ox ox
where C is the heat capacity of the moving fluid. If, as is the case with water, a phase change and
the associated latent heat are involved, it is necessary to deal appropriately with the step function in
the enthalpy.



In the case of diffusion or forced convection of a gas, absorption and desorption by the medium
(concrete) probably can be ignored. However, for moisture transfer at temperatures below the
boiling point of water (at the local pressure), absorption effects are quite important and the mass
storage of water, and the associated enthalpy storage, need to be considered. Absorption/desorption
of water vapor is usually described in terms of sorption isotherms, curves which relate the
equilibrium absorbed moisture content of a medium, at a specific temperature, to the moisture
content (usually expressed as vapor pressure or humidity) to which it is exposed. At low humidities,
absorption is mainly by adsorption, first in monomolecular layers and then in multimolecular layers.
Above about 40 percent relative humidity, capillary condensation begins in the smallest micropores
of the material and then, as the humidity increases, there is condensation in larger pores and cracks,
due to the depression of vapor pressure over the curved menisci of the water-filled capillaries.
Porous materials exhibit hysteresis, so that absorption isotherms differ from desorption isotherms.
The moisture capacity of a material is defined as the slope of the sorption isotherm (analogous to
the heat capacity being the slope of the enthalpy-versus-temperature curve). The moisture capacity
increases markedly as the water vapor pressure increases toward the saturation vapor pressure.
Above a relative humidity of about 97 percent, it is customary to treat the moisture as being a liquid.
Here the moisture capacity of a material is related to the capillary suction pressure by what is known
as a suction curve, which also exhibits hysteresis.

Consideration of the mass flux (e.g., Eq. (5) or (6)) and the moisture capacity results in a differential
equation, for diffusive mass transfer, that is analogous to Eq. (1) for heat transfer. A source term
is added to this differential equation to represent the mass of moisture that is created or annihilated
by hydration or dehydration, respectively. If the driving potential is taken as the density of the water
vapor, mass conservation plus Eq. (5) results in

S
+ =
Da  ox2 p (10)
where S is the source term [kg/m*s] included to deal with conversion of liquid to vapor, or vice
versa, or with the creation of water by dehydration of the medium. Comparison of the form of
Eq. (10) with that of Eq. (2) shows the analogy between mass diffusivity and thermal diffusivity.
The form of Eq. (10) does not explicitly show the dependence upon moisture capacity. If partial
pressure or, equivalently, relative humidity is used as the driving potential and Eq. (6) is used to
obtain the mass flux, mass conservation yields

Pl ap _ @p

dp, ot dx?

+£ ]1
6’ ()

where p  is the bulk density of the medium, p; is the saturation pressure [Pa] at the local temperature
of the medium, and € is the moisture capacity obtained as the slope of the sorption curve, plotted as
mass of water vapor per unit mass of the medium versus relative humidity (so § is dimensionless).

Some investigators explicitly consider two moisture fluxes, one for vapor and one for liquid, while
others use a single moisture flux, with the moisture capacity being used to deal with the change of
phase, or the absorption and desorption, of the water. An equation analogous to Eq. (11) can be



derived for transfer of liquid water, with the moisture capacity being obtained from capillary suction
curves.

Forced convection of moisture through the medium also requires consideration of the moisture
capacity of the medium. For sufficiently small flows, one might assume that the moisture absorbed
or desorbed can be predicted from the moisture capacity as determined from sorption curves or
suction curves measured under steady-state conditions. In such a case, differential equations
analogous to Eq. (11) could be written. However, for concrete under simulated fire conditions and
high pore pressures, it is questionable whether there would be time for such equilibrium to be
achieved.

2.1 Irreversible Thermodynamics Approach for Diffusion of a Gas

Before discussing the rather complex analysis of two-phase (liquid and vapor) flow of moisture
through a porous solid, the more simple case of diffusion of a gas through a stationary medium is
considered. This is done most conveniently by the methods of irreversible thermodynamics,
applying the Onsager Reciprocal Relations [1-24]. A set of current densities is defined as

Ji = }J: LyX; (12)

where X; are the "conjugate forces," such that

RS) =D 1%, (13)
J

where R(S) is the rate of entropy production in the system. The Onsager Reciprocal Theorem states
that

L,.j = Lﬂ. . (14)

The rate of entropy production is uniquely defined by the system under consideration, but since R(S)
can be split into a sum of products in many ways, one is left with a choice of current densities and
conjugate forces. We choose a mass current density J,,, an internal energy current density J,, and
an entropy current S, so that the divergence of each of these current densities is the rate of change
per unit volume of the corresponding thermodynamic variable. With these definitions for the current
densities,

TS:Ju—me ’ (15)

where T is the absolute temperature and p is the chemical potential of the diffusing gas. The rate of
production of entropy is

R(S) = V'S = Jm~V(—%] + Ju-v(lT] . (16)

The current densities are
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In order to put these expressions in terms of measurable gradients, it is noted that

V(E) _Yyp-Ditbgr_Yyp. tyr
T) T 72 T 72

3

(19)
where v is the specific volume, s is the specific entropy, and 4 is the specific enthalpy. Substitution
of Eq. (19) into Egs. (17) and (18) yields

mev Lm’nh h Lmu
J,=- VP + - vT (20)
T
Lmuv Lmu - uu
J, = - + = VT . 2n

Thermal conductivity is defined as

A :[_—g} _
vr J,=0

where Q is the heat current density, since when J,, =0, J,=Q. Setting Eq. (20) equal to zero yields

(VP) _h-LJL.,
vT 3,-0 vT

-J

u

vT

(22)
3, =0

(23)

This ratio of the pressure gradient to the temperature gradient, when there is no mass flow, is called

the thermomolecular pressure difference. Combining Eqs. (21)-(23) yields the following expression
for the thermal conductivity in terms of the Onsager coefficients

L L -1L?
) = T";'"L me (24)



When the system is isothermal, V T = 0 and the two current densities are simply

L v
J = -—VP and J =-—VP , (25)

J,=—1J,=0a), , (26)

where o is a quantity that can be determined experimentally by measuring both heat flow and mass
flow for isothermal conditions. Permeability is defined as

T 27

where p = 1/v is the density of the gas.

The Onsager coefficients can be expressed in terms of the measurable quantities A, «, and  (other
measurable quantities could have been selected of course):

L =PT L = ofT L, =AT? + opT . (28)

mm

With these substitutions into Egs. (20) and (21), the current densities become

J - pVP - W_T““)VT (29)
J, = -apVP - (A - “B(—;’f"‘)] VT (30)

Note that the use of the Onsager reciprocal relation results in only three measurable parameters being
required, rather than four (h does not have to be measured since accurate data for the specific
enthalpy are available for most gases and liquids of interest and certainly for water). Note that the
quantity o requires thermal measurements even though it is defined under isothermal conditions.

Consider now the case of moisture transfer through a hygroscopic material. Even though there is
no liquid water entering or leaving the specimen, there will be adsorbed water and, at moderately
high humidities, liquid water inside the pores and capillaries. In general, proper understanding of
simultaneous heat and mass transfer for such circumstances requires that both the vapor phase and

10



the liquid phase be explicitly considered. The current densities, analogous to those in Egs. (17) and

(18), are
J, - LY [ o)Ly [ %] v, (4] Gy
H, H, |
J, :LIVV[—7 +L”V(_F] +LIMV(?) (32)

. + AV . 33
‘—] Luu ( ) ( )

where J, is the mass current density for water vapor, J, corresponds to mass flow of liquid water and,
as before, J, is the current of internal energy. The nine coefficients can be reduced to six by
invoking the Onsager reciprocal relations. Further reduction in the number in coefficients requires
that certain assumptions be made, or other information be used, concerning the relationship between
water vapor and liquid water. For example if the sorption isotherm curve is known for the specimen
of interest, one can infer how much water will be adsorbed and/or absorbed in a specimen that is
exposed to a particular temperature and relative humidity. The Kelvin equation can be used to relate
hydraulic pressure inside a capillary to the relative humidity. Several workers have developed
theories to describe simultaneous heat and mass transfer due to moisture migration in hygroscopic
materials. Such derivations are quite complex and space and time do not permit showing the details
in this report. Rather, the results obtained by several prominent workers in the field are given and
differences and similarities are pointed out. There are many differences among these several
developments in the definitions of terms and the symbols used; here the same nomenclature of the
original workers is used so as not to add further confusion.

2.2 Heat Transfer and Diffusive Mass Transfer (no convection)

One comment is in order before proceeding to list the expressions which previous workers have
obtained for the mass and heat fluxes associated with moisture transfer. In the derivation given
above, a single gas was diffusing through a porous medium under the combined effects of a
temperature gradient and a pressure gradient. In the case of moisture transfer, the water vapor
pressure is normally very small compared to the total pressure of the moist air. Therefore in most
derivations in the moisture literature it is assumed that the total pressure in the medium is uniform
and that the water vapor diffuses under the combined influence of a concentration gradient (which
may be expressed as a vapor pressure gradient or a humidity gradient) and a temperature gradient.
If one wished to allow for the effects of a gradient in the total pressure, as is the case for concrete
exposed to a fire, it would be necessary to add a convective term to the expressions given below.
Similarly, the effects of gravitational forces are usually neglected in the case of moisture transfer
through a hygroscopic medium.

11



Philip and de Vries [18-20] defined liquid flux density as
q, = -p,(Dy, VO, + D,VT + Kk) , (34)
where
Dy, = Kay/a6, and D, = Koy/oT . (35)

In these equations p, is liquid density, 8, is volumetric liquid moisture content, Dy, is macroscopic
diffusivity for liquid transport due to V 6,, T is temperature, Dy, is macroscopic diffusivity for liquid
transport due to V 7, K is hydraulic conductivity, k is the unit vector in the z-direction, and ¥ is
moisture potential (see Eq. (39), below).

Philip and de Vries defined vapor flux density as
qv - _pl(Devvel * DT»VT) (36)

where
P MgP, oy
P - p, RT p, 96,

Dy = f(a)D (37)

p P { dp,

D,, = flayD P o p. dT (38)

p, = hp,, = p, exp(Mgy/RT) (39)
fla=a+8 =5, for 6, <0, (40)

f@ =a+a(S -a)(S -0, , for 6,> 0, @1)
{=(VD),/VT . 42)

In these equations 0, is volumetric moisture vapor content, Dy, is macroscopic diffusivity for vapor
transport due to V 0,, D, is macroscopic diffusivity for vapor transport due to V 7, a is volumetric
air content, D is the diffusion coefficient of water vapor in air, P is total gas pressure, M is molar
mass, g is acceleration due to gravity, R is the universal gas constant, p, is vapor density, p,, is the
partial pressure of water vapor at saturation, 4 is relative humidity, and § is porosity. They also
define a total moisture flux density as

q, =4, +q, = —pl(DeV6,+DTVT+Kk) ) (43)
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Philip and de Vries defined the heat flux density as

qh -ATVT + CI(T B To)qm B LplDevvel (44)

or

H

qh —A'+VT * cl(T - T())qm B LplDevvel (45)

where A’ is the (apparent) thermal conductivity associated with macroscopic inclusion of water
vapor, A" is the (apparent) thermal conductivity associated with microscopic inclusion of water
vapor, ¢, is specific heat of liquid water, 7, is a reference temperature, and L is the latent heat of
evaporation. In this expression, the first term represents normal heat conduction, the second term
represents the sensible heat transfer due to mass transfer, and the third term corresponds to the latent
heat transfer due to mass transfer.

Fortes and Okos [21-22] derived the following heat and mass transfer equations, applicable to
hygroscopic capillary-porous media:

Liquid mass flux:

R T
o, R MHVT - p = aHVM) (46)

S H oM

Vapor mass flux:

. oH dp,, OH
= -K + H vVT - — | VM 47
']V v[[pvo aT dT] (pva aM) ( )
Heat flux:
. oH 4P, ||R.T? 9H
=-K VT- K.R InH+K +H VM . 48
3q 4 Py ”(p””aT dT) H oM *45)

In these equations K is "liquid conductivity," p, is liquid density, R, is the gas constant per unit mass
of water vapor, H is relative humidity, M is moisture content expressed as mass of moisture per unit
mass of dry medium, K, is "vapor conductivity," p,,, is the saturation density of water vapor, and K,
is apparent thermal conductivity. Note that everywhere V M appears it is multiplied by 0H/0M so
that the equations are effectively given in terms of the humidity gradient.

Luikov [23-24] combines the mass current density for water vapor and the mass current for liquid
water into a single mass current density for moisture,

J,=-a,p,Vu -a,p,6VT , (49)

m

13



where u is moisture content, a,, is "moisture diffusivity," p, is the density of the dry medium, and 6
is the "thermogradient coefficient." The corresponding heat current density is

J, = -AVT -re], , (50)

where A is thermal conductivity (Luikov put conductive heat transfer in terms of the thermal
diffusivity a = p, ¢ A, where c is the effective heat capacity of the moist medium), 7 is the latent heat
of vaporization, and € is the "phase conversion factor" of liquid into vapor.

The final expressions of Philip and de Vries, Fortes and Okos, and Luikov are all of the general form
of Egs. (31)-(33) but without some of the "cross" terms. For example, Philip and de Vries expressed
the liquid flux density in terms of the gradient of liquid moisture content and the temperature
gradient but did not have a term involving the gradient of moisture vapor content. Similarly, their
expression for the vapor flux density involved the vapor concentration but not the liquid content.
Fortes and Okos effectively used relative humidity, along with temperature, as the driving force for
both liquid and vapor flow. Luikov combined liquid and vapor and only considered total moisture
content (in his derivations this simplification was accomplished by using the sorption isotherm to
infer liquid content from vapor concentration and vice versa).

2.3 Ahmed Model

Since the NIST parties involved with this project have access to the papers by Ahmed, et al.,
describing the model used to simulate coupled heat and mass transfer in concrete slabs, only the
three coupled differential equations which they use are shown here.

The differential equation for conservation of mass for water vapor is

0 0 oP 3, 0
5(Pveg¢)‘gx‘(9v€g"pg¢] ‘g(PgegDa—f) =T, (51)
where p, and p, are the density [kg/m’] of, respectively, the water vapor and the gaseous mixture of
water vapor and air, €, is the volume fracture [m*m?] of gaseous mixture in the porous medium, ¢
is the mole fraction [kmol/kmol] of water vapor in the gaseous mixture, K, is the “coefficient of
permeability” [m’ss/kg], P is the pore pressure [Pa] of the gaseous mixture in the porous medium,
D is the “modified diffusivity” [m%s] of the gaseous mixture, and I' is the mass rate of evaporation
of water per unit volume of porous medium [kg/m’ss]. The coefficient of permeability, K, is defined
as Kp = Kg/g Pe€,o where K, is the “permeability” [m/s] of the gaseous mixture and g is the
acceleration [Hl/gz] due to gravity. The modified diffusivity, D, [m*/s] is D = (M, M IM D',
where M, M, and M, are the molecular weights [kg/kmol] of, respectively, the gaseous mixture, the
air in the gaseous mixture, and the water vapor in the gaseous mixture and D' is the diffusivity [m%s]
of the gaseous mixture. Ahmed, et al. identify the four terms of Eq. (51) as the transient term, the
convection term, the diffusion term, and the source term.
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Ahmed, et al., use a different definition for permeability than the one that is normally used.
Apparently K = (pg/n)+K, where p is density, p is viscosity, and K is the permeability as normally
defined (see éq. (7), above).

The differential equation for conservation of mass of the mixture of water vapor and air is

d d oP
a(pgeg)— a(pgeng—a;) =TI, (52)

where the three terms are the transient term, the convective term, and the source term. The
differential equation for conservation of energy is

oT oP aT op | oT 0 oT
C—-peC —— - e(C -C)D—|— = —tk— | -0T ,
P ot P o, Ox Ox (Pg #(C, n) ax) Ox ax( ax) ¢ (53

where Cp, Cp , C iy and C 5 are, respectively, the (total) effective heat capacity of the porous
medium, the heat capacity of the gaseous mixture, the heat capacity of water vapor, and the heat
capacity of air, k is the effective thermal conductivity of the medium, and the source term
(evaporation/dehydration ) is defined as

36, 38,
L (0, v 0,) 2w 54
=L (00 0= (54)

QF = —(Qg

where Q, is the latent heat of evaporation [J/kg] of free water vapor, Q,, is the heat of hydration
[J/kg] of chemically bound water in the porous medium,  is the mass concentration of free liquid
water in the pores per unit volume of porous medium [kg/m’], and &, is the mass concentration of
chemically bound water (in the cement paste) per unit volume of porous medium [kg/m®]. The five
terms in Eq. (53) represent the transient term, the convection term, the diffusion term, the conduction
term, and the source term, respectively.
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3. Existing Data on Thermal Properties of
Concrete and Its Constituents

Since the data available for the properties of high strength concrete are quite limited and since most
of the thermal properties of high strength concrete are not expected to differ considerably from the
properties of normal concrete, this section addresses data available for both normal and high strength
concrete.

The most important references, over the past thirty years, that contain data on the thermal properties
of concrete, mortar, or cement paste over extended temperature ranges include [25-50]; these
references in turn refer to many other publications. The vast majority of data on thermal properties
of concrete correspond to temperatures close to normal room temperature. Reference [51] contains
an extensive compendium of data on rocks and minerals, including materials that can be used as fine
and coarse aggregates in Portland cement concrete. Although this reference has a 1989 copyright
date, it was originally written in the late 1970's and all of the references are to publications dated
1978 or earlier, with very few references for 1977 or 1978. Other references relevant to the thermal
properties of rocks include [52-59].

3.1 Mass, Volume, and Density

The density of concrete and its constituents is needed to compute volumetric heat capacity, which
is needed for the various theoretical models used to predict heat transport in fire-exposed concrete;
however, since the density does not vary by much over the temperature range of interest, only
relatively small corrections to the room temperature density are required.

In addition, the variation of mass with time and temperature is an important indicator of the degree
of conversion from the reactants to the products in a chemical reaction, such as dehydration or loss
of carbon dioxide. Accordingly, information as to mass variation is important in determining the
enthalpy of aspecimen. Similarly, since a material may expand or contract when a chemical reaction
takes place, thermal expansion data can be useful in determining the degree of conversion for a
chemical reaction.

Thermal expansion data also will be needed to predict thermal stresses that might contribute to
spalling. In addition, post-test measurements of thermal expansion would provide sensitive
indicators of the degree of dehydration due to the temperature-time exposure that took place during
a real or simulated fire.

Figure 1 shown the mass loss and the thermal expansion of a particular cement paste as functions
of temperature when the specimen is heated at a nominally uniform rate from room temperature to
1000 °C. At 1000 °C, the one-dimensional length change is about 3.3 percent so that the volumetric
contraction is approximately 10 percent. Since the same type of cement paste lost 15 percent of its
mass, the bulk density would decrease by a rather small percentage between room temperature and
1000 °C (see Figure 16, below).

16



Figure 2 shows mass loss and temperature change for a sample of Portland cement paste that was
heated to 260 °C over a period of 4.75 h, held at 260 °C for 44 h, and then allowed to cool to room
temperature.

Curves A and C in Figure 3 show mass loss versus temperature for, respectively, a calcareous
aggregate, containing carbonate (lime or limestone), and a siliceous aggregate, containing silica. The
much greater mass loss for the carbonate aggregate is due to the dissociation of the carbonate and
the attendant release of carbon dioxide. Curves B and D correspond to concretes made with the two
types of aggregate. Figure 4 shows mass loss for various concretes, including measurements by two
different investigators on limestone concrete. Another set of data for carbonate concrete is shown
in Figure 5, with this concrete having the composition indicated in column 2 of Table 1 (the other
two specimens for which data are shown in Figure 4 contained reinforcing steel fibers, which would
not be expected to change the mass loss versus temperature curve significantly).

Table 2 shown the constituents of five high-strength concretes recently studied by investigators at
the Portland Cement Association. The mass loss versus temperature for these specimens are shown
in Figures 6, 7, and 8, corresponding to the different heating rates listed at the bottom of each figure.

Figure 9 shows how the amount of silica fume in a high-strength concrete affects the loss of mass
with increasing temperature.

As mentioned above, in addition to mass loss, Figures 1 and 2 showed thermal expansion versus
temperature for Portland cement paste. Additional thermal expansion data for cement paste are
shown in Figure 10.

With regard to potential aggregates, Figure 11 shows thermal expansion data on the ten different
types of rocks that are listed in Table 3. The data for limestone are shown by the curve labeled LI

Thermal expansion versus temperature for several different types of concrete are shown in Figures
12,13, and 14. Each of these figures includes data for a limestone-aggregate concrete. Figure 15
indicates how the room-temperature thermal expansion coefficient for concretes is related to the
thermal expansion coefficient of the aggregate.

Figure 1 presented information on the mass loss and thermal expansion of a particular cement paste.
Figure 16, shows, for that same paste, how the true density, the bulk density, and the porosity are
believed to change with increasing temperature.

Figures 17 and 18 show the effect of temperature on the density of concretes with different types of
aggregate. The data in Figure 17 correspond to limestone-aggregate concrete, which loses
considerable density when the carbonate disassociates. Figure 19 shows the density versus
temperature curves used in the version of the Ahmed model (see Section 2.3, above) that is currently
available at NIST. Type 1 refers to carbonate aggregate concrete and Type 2 to siliceous concrete.

(Text continued on p. 32)
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Figure 1. Thermogravimetric and dilatometric curves for Cement Paste C [27,41].
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Property

Batch (specimen type)

1 (NRC1]) 2 (NRC2) 3 (NRC3)
Cement content (kg/m?) 380 439 439
Fine aggregate (kg/m’) 673 621 621
Coarse aggregate (kg/m?)
19 mm 678 788 788
9.5 mm 438 340 340
Total 1162 1128 1128
Aggregate type Siliceous Carbonate Carbonate
Water (kg/m?) 167 161 161
Water —cement ratio 0.44 0.37 0.37
Retarding admixture (mL/m?) 745 — —
Superplasticizer (mL/m?) 2500 300 1200
Steel fibre (kg/m?) 42 — 42
28-day compressive strength (MPa) 39.9 32,6 43.2
Compressive strength at test date (MPa) 40.9 37.1 433
Table 1. Batch quantities and properties of concrete mix [44].
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Figure 5. Mass loss of various concrete types as a function of temperature [44].
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Parameter Number identifying type of mix
Units per cubic meter 2 3 4

Cement Type [, kg

Silica Fume, kg (1)

Fly Ash, kg

Coarse Agg. SSD, kg. (2)

Fine Agg. SSD, kg.

HRWR Type F, liter

HRWR Type G, liter

Retarder Type D, liter

Total Water, kg. (3)

Water/Cement Ratio

Water/Cementitious Ratio

Note: As reported by ready-mix supplier

(1) Dry weight

(2) Maximum aggregate size: 12 mm

(3) Weight of total water in mix including admixtures

Table 2. Composition of concrete mixtures [47-48].
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Figure 6. Mass loss of high strength concrete at elevated temperatures [47-48]

23

982



Mass Change, percent

Heating Rate of 20°C

=25 = per minute ]
OO0 Mix No. 1
30 b [Jese{ ] Mix No.5 _
a5 1 1 | |
-18 182 382 582 782 982

Temperature, 'C
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Figure 10. Length change of Portland cement paste specimens at various temperatures: (a) Philleo
(1958); (b) Harada et al. (1972); Cruz and Gillen (1980); (d) Crowley (1956) [45].
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Name Symbol Geological Composition Density Grain size

Origin (kg/m®) {mm)
Anorthosite AN Igneous Almost all plagioclase 2770 0.05-20
teldspars
Basalt BA Igneous Mainly epidotes, pyroxenes 3040 0.005-0.08
and plagioclase feldspars
Dolomite DO Sedimentary Almost all dolomite 2490 0.1-7
Granodiorite GD [gneous Plagioclase feldspars, quartz 2750 0.05-4
amphiboles and micas
Granite GR [gneous Mainly potash and 2620 0.05-5
plagioclase-feldspars, quartz
Limestone LI Sedimentary Mainly calcite 2700 0.002-2
Quartz Mainly potash and
Monzonite QM Igneous plagioclase-feldspars and 2645 0.5-7
quartz
Quartz QR Igneous All quartz 2650 0.2-10
Rhyolite RH Igneous Mainly potash and
plagioclase-feldspars, and 2640 0.05-3
quartz
Syenite SY [gneous Mainly potash and
plagioclase-feldspars, and 2715 0.1-10
amphiboles

Table 3. Some characteristics of the ten rocks whose dilatometric curves are shown in Figure 11
(Geller, et al. 1962) [41].

0.05

0.03—

Alfly (m m™")
T

0.02

0.01

= L L
0 200 400 600 800 1000

Temperature ("C)

Figure 11. Dilatometric curves for the ten rocks described in Table 3 (Geller, et al. 1962) [41].
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Figure 12. Dilatometric curves for three normal-weight concretes and three lightweight concretes.
Aggregates: LI, limestone; SIsiliceous rock; AD, andesite; SG, expanded shale; CL, expanded clay;
PU, pumice (Harada, et al. 1972; Harmathy and Allen 1973) [41].
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Figure 13. Linear thermal expansion of concretes made with various conventional aggregates, as a
function of temperature (adapted from Schneider (1982)): (a) quartzite; (b) sandstone; (c) limestone,

(d) basalt; (e) expanded slag [45].
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Figure 14. Thermal expansion, as a function of temperature, of the three concrete types described
in Table 1 [44].
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Figure 16. True density (p,), bulk density (p,,), and porosity (P,) of Cement Paste C (calculated):
note the different scales for the three properties [27,41].
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Figure 17. Effect of temperature on density of concrete made with limestone aggregate (Schneider,
1982): (a) Harmathy and Allen (1973); (b) cured at 20 °C and 65 percent RH (Schneider, 1982);
(c) water cured (Schneider, 1982) [45].
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Figure 18. Effect of temperature on mass density of concretes made with quartzite, bauxite, and
expanded shell aggregates: (a) expanded shale aggregate concrete (Harmathy and Allen, 1973);
(b) siliceous aggregate concrete (Harmathy and Allen, 1973); (c) quartzite aggregate concrete
(Schneider, 1982); (d) basalt aggregate concrete (Schneider, 1982) [45].
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Figure 19. Density versus temperature curves used in the Ahmed model (see text).
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3.2 Enthalpy, Specific Heat, and Heats of Reaction

The enthalpy or the specific heat, the derivative of enthalpy with respect to temperature, and the
heats of reaction of any chemical reaction are required for modeling heat and mass transfer through
concrete. These quantities are briefly discussed on pp. 5-6 of this report. Their inclusion in various
models is indicated in Section 2.

Harmathy [27,41] has developed detailed procedures, which are briefly addressed in Section 4.2 of
this report, for predicting the specific heat of cement paste and of concrete. Figure 20 shows his
predicted specific heats for three different cement pastes; Figure 21 shows his later experimental
results for those same cement pastes. The large peaks near 500 °C correspond to the release of
bound water. The width and height of such peaks will depend significantly on the heating rate; the
area under the curve represents the total energy absorption or release associated with a chemical
reaction and thus will be much less dependent upon the heating rate. Some the models for predicting
heat and mass transfer through concrete or other materials do not include the latent heat of reaction
in the specific heat of the material but treat it separately. Thus, one must be careful to select the
“proper” specific heat for use in a particular model.

Fu and Chung [50] recently published room temperature values of the specific heat of cement paste
with various admixtures. For a plain cement paste with a water/cement ratio of 0.45, the density was
1.99 g/cm’ and the specific heat was 0.703 J/geK, corresponding to a volumetric heat capacity of
1.40 J/cm®eK. A cement paste with 15 percent (by weight of cement) silica fume, 3 percent (by
weight of cement) water reducing agent, and a water cement ratio of 0.35 had a density of 1.72 g/cm’
and a specific heat of 0.765 J/geK, corresponding to a volumetric heat capacity of 1.32 J/cm’+K.

Figure 22 shows the volumetric specific heats that Harmathy [27,41] computed for four hypothetical
concretes that he believed were “limiting cases,” at least with regard to thermal conductivity. It is
seen that the computed volumetric specific heats are very nearly identical for the two normal-weight
concretes, one of which (Concrete 1) had crystalline quartz aggregate while the other one had
crystalline anorthosite aggregate.

Figures 23 and 24 show the specific heat (per unit mass) of various types of Portland cement
concrete as functions of temperature. Curve 6 in Figure 23 appears questionably low at higher
temperatures. The curve for plain carbonate concrete in Figure 24 clearly shows the heat absorbed
at high temperatures when the carbonate converts to the oxide with carbon dioxide being released.
Note also, in this figure, that the specific heat is significantly lower at temperatures above this
transition than it is at temperatures just below the carbonate decomposition temperature. Figure 25
shows the specific heat versus temperature curves used in the version of the Ahmed model that is
currently available at NIST. As stated on p. 17, Type 1 concrete has a carbonate aggregate and
Type 2 a siliceous aggregate. Both of these curves appear to be in error at high temperatures. For
the Type 1 concrete, the specific heat should drop drastically from the peak at temperatures near
800 °C, in a manner similar to that seen for carbonate concrete in Figure 24. For the Type 2
concrete, there is no apparent reason to expect a high-temperature peak at all.

(Text continued on p. 37)
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Figure 20. Computed specific heat of Model Pastes A, B, and C [27,41].
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Figure 21. Measured specific heat of Cement Pastes A, B, and C [41].
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Figure 22. Volumetric specific heats (computed) for four hypothetical concretes: normal-weight,
Concretes 1 and 2; lightweight, Concretes 3 and 4 [27,41].
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Figure 23. Effects of temperature on measured specific heats of various concretes: (1) granite
aggregate concrete (Odeen, 1968); (2) limestone aggregate concrete (Collet and Tavernier, 1976);
(3) limestone aggregate concrete (Harmathy and Allen, 1973); (4) siliceous aggregate concrete
(Harmathy and Allen, 1973); (5) limestone aggregate concrete (Hildenbrand, et al., 1978); (6)
siliceous aggregate concrete (Hildenbrand, et al., 1978) [45].
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Figure 24. Specific heat, as a function of temperature, of the three concrete types described in
Table 1 [44].
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Figure 25. Specific heat versus temperature curves used in the Ahmed model (see text).
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3.3 Thermal Conductivity and Thermal Diffusivity

Thermal conductivity is a key thermal property in predicting heat and mass transport in concrete
exposed to fire conditions. As mentioned on p. 5, thermal diffusivity can be used if there are no
mechanisms of heat transfer other than conduction and if the thermal conductivity can be considered
to be constant. For modeling simultaneous heat and mass transfer, thermal diffusivity, in general,
should not be used. However, rather than to measure thermal conductivity directly, many
investigators have chosen to measure thermal diffusivity and then compute thermal conductivity
from the thermal diffusivity and the specific heat.

Harmathy determined the thermal conductivities of several cement pastes, which have significant
porosity and cracks, over a wide temperature range and then extrapolated these results to obtain an
estimate of the thermal conductivity of a hypothetical pore-less cement paste, as shown in Figure 26.
This curve can then be used to estimated the thermal conductivity of pastes of various porosities.

Fu and Chung measured the room-temperature specific heat, thermal diffusivity, and density of a
plain cement paste and one containing silica fume (see p. 32 of this report for compositions) and then
computed the thermal conductivity. The measured thermal diffusivities of the plain cement paste
and the silica fume cement paste were 0.37 mm?s and 0.27 mm?s, respectively. The corresponding
thermal conductivities were 0.52 W/me+K and 0.36 W/meK, respectively, indicating that the higher
porosity of the silica fume cement paste resulted in the room-temperature thermal conductivity being
lowered by about 30 percent.

Figure 27 shows the thermal conductivity of 15 rocks and minerals at temperatures up to 300 °C;
these materials are described in Table 4. Harmathy based his “limiting cases,” discussed briefly on
p. 32 of this report, for the thermal conductivity of concrete by selecting Curve QS (quartzitic
sandstone) and Curve AN (anorthosite) as the thermal conductivity of the aggregates. The thermal
conductivity of rocks and minerals can vary widely depending upon the source and the porosity.
Touloukian, et al. [51] provide extensive data on the thermophysical properties of rocks, taken from
the literature through the mid-1970s. They comment that because the properties of rocks and
minerals can vary widely over relatively small distances and because the specimens used for
thermophysical property measurements are relatively small, the measured properties can vary widely
on specimens taken from nominally the same location. Figure 28 is a histogram showing the
variation in the room-temperature thermal conductivity of limestone samples taken from two
locations. It is clear that tests on numerous samples would be required to obtain statistically
significant results.

Figure 29 shows the thermal conductivity of limestone, versus temperature, as measured by three
different investigators. The two curves on samples taken in Nazareth, Pa., were from the same study
as the curves shown in Figure 27.

Figure 30 shows the measured roon-temperature thermal conductivity of several different types of
concrete, plotted versus the moisture content. These data were taken using a hot-wire method that
allows measurements to be completed before the moisture has time to migrate significantly. It is
seem that 10 percent moisture content can cause the thermal conductivity to be roughly doubled.
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Obviously, this effect would be much smaller at higher temperatures. However, as pointed out by
Thompson [60] many years ago, and as is known by competent workers in the field of thermal
conductivity, it is very difficult to obtain values of thermal conductivity without some moisture
movement and/or drying out occurring.

The thermal conductivity of concrete will depend upon the porosity of the cement paste and upon
the type, quantity, and porosity of aggregates. Figure 31 shows one set of data indicating how the
thermal conductivity of different types of concrete varies with porosity.

The thermal conductivity of concrete is known to show considerable hysteresis, although there
appear to have been very few quantitative studies of this effect. Figure 32 indicates one set of data
indicating how the thermal conductivity of a concrete changes due to the loss of moisture of
hydration.

There has been considerable variation in thermal conductivity values reported by different
investigators on nominally similar concretes. Part of the variations seen may be attributed to sample
differences but it appears quite likely that large experimental errors have occurred in some cases.
Figures 33 and 34 shown the thermal conductivity of, respectively, limestone-aggregate concrete and
siliceous aggregate concrete.

Figures 35-37 show the thermal conductivity of different types of normal-strength concrete as
functions of temperature.

In Section 3.1 curves were shown of the mass loss versus temperature of five high-strength concretes
studied by investigators at the Portland Cement Association (PCA). The constituents of these
materials were shown in Table 2. Figure 38 shows the thermal conductivity values obtained for
these materials using a guarded hot plate apparatus. Thermal conductivity data on these materials
were also obtained, by a different testing laboratory, using a hot-wire method (ASTM C1113). In
addition, thermal diffusivity data were obtained by the same testing laboratory using a radial heat
flow method and then thermal conductivity values were computed, apparently using specific heat
values computed from the specific heats of the several components of the concrete. For one of these
high-strength concretes, the three sets of thermal conductivity values are shown plotted in Figure 39.
The differences are rather startling.

Figure 40 shows the thermal conductivity versus temperature curves used in the version of the
Ahmed model that is currently available at NIST (one obvious typo in the program was corrected).

Turning to thermal diffusivity, Figure 41 shows the range of values for the thermal diffusivity of
limestone from three different investigations.

Figures 42-46 show thermal diffusivity versus temperature for a number of types of normal-strength
concrete. Figure 47 shows thermal diffusivity data obtained at PCA on the five high-strength
concretes described in Table 2; these data were obtained in their guarded hot plate apparatus, run in
a transient mode with the hot plate removed. For one of these samples, these data are shown in
Figure 48 along with data obtained elsewhere by the radial heat flow method mentioned above.

(Text continued on p. 55) 38
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Figure 26. Thermal conductivities of Cement Pastes A, B, and C (points and solid-line curves), and
thermal conductivity of a hypothetical pore-less cement paste (broken-line curve): [J, Paste A; open

triangle, Paste B; O, Paste C [27,41].
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Figure 27. Thermal conductivity of 15 materials (rocks, minerals, glass) described in Table 4 (Birch
and Clark 1940) [41].
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Name Symbol Geological Composition Density Mean grain
origin (kg/m’) size (mm)

Anorthosite AN Igneous Almost all plagioclase 2700 0.5
feldspars

Diabase DI Igneous Mainly plagioclase 2960 0.5
feldspars and pyroxenes

Dolomite DO Sedimentary ~ Carbonate group 2830 0.01

Dunite DU Igneous Almost all olivines 3250-3270 1.0

Gabbro GA Igneous Mainly plagioclase 2860-2880 3.0
feldspars, pyroxenes and
olivines

Gnetss GN Metamorphic  Layered mineral, mainly 2640 0.2
feldspar and quartz

Granite-1 GR-1 Igneous Mainly potash feldspars 2610 1.5-2.0
and quartz

Granite-2 GR-2 Igneous Mainly potash and 2640 0.5
plagioclase-feldspars, quartz

Hypersthenite HY Igneous Pyroxene group 3290 2.0

Limestone LI Sedimentary  Carbonate group, mainly 2610 0.001-0.01
calcite

Obsidian OB [gneous Glassy potash feldspar 2440
and quartz

Pyrex PY Artificial 2230

Quartz

monzonite QM  Igneous Mainly potash and 2640 1.0
plagioclase-feldspars and
quartz

Quartzitic QS Sedimentary  Mainly quartz 2640-2650 0.3

sandstone

Slate SL Metamorphic  Layered clay minerals 2760

Table 4. Some characteristics of the 15 materials (rocks, minerals, glass) whose thermal
conductivity are plotted in Figure 27 (Birch and Clark, 1940) [41].
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Figure 29. Thermal conductivity of limestones [51].
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Figure 33. Thermal conductivity of limestone-aggregate concretes [35].
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Figure 34. Thermal conductivity of siliceous-aggregate concretes [35].
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Figure 35. Thermal conductivity of different structural concretes [38].
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Figure 36. Thermal conductivity of various concretes that were not oven-dried before test, as a
function of temperature: (a) limestone aggregate concrete (Crispino, 1972); (b) barytes aggregate
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Figure 37. Thermal conductivity, as a function of temperature, of the three concrete types described
in Table 1 [44].

46



Thermal Conductivity, W/m*K

2.5 — —
O___i ./
O— ——
20 I~ / ﬁ—h;_@ ]
W
1.5 — —
1.0 —
O Mix No. 1
D\ Mix No. 2
V—%7 Mix No.3
05 > Mix No. 4 N
[Jee=—{T] MixNo.5
00 R A SN SN NN N SN S S
-18 22 62 102 142 182 222 262 302 342 382 422

Figure 38. Thermal conductivity versus temperature for the five high strength
concretes described in Table 2 [47-48]

Mean Specimen Temperature, *C

47



Thermal Conductivity, W/m-K

[}V
(921

2.0

1.5

1.0

0.5

0.0

Q=0 ASTM C113 (Orton)
D=\ Calculated from Diffusivity {Orton)

i/ ASTM C177 (CTL)

l | I l ] I I | l l

-18 82 182 282 382 482 582 682 782 882 982

Mean Specimen Temperature, "C
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Figure 40. Thermal conductivity versus temperature curves used in the Ahmed model (see text).
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Figure 41. Thermal diffusivity of limestones [51].
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Figure 43. Thermal diffusivity of limestone concrete [35].
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Figure 45. Thermal diffusivity of different concretes [38].
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Figure 47. Thermal diffusivity versus temperature for the five high strength
concretes described in Table 2 [47-48]
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4. Correlations and Prediction of Thermal Properties

Concrete is a mixture of cement paste, fine aggregate, and coarse aggregate, with capillary pores and
gel pores and some evaporable (as opposed to chemically bound) water. The general approach taken
in this section is to examine various equations that can be used to predict a particular property of a
mixture from the composition of the mixture and from the (same) property of each of the
constituents. Two “mixture rules” are identified below. For the density and the heat capacity of a
mixture, these rules reduce to very simple forms that are almost intuitively obvious. For a transport
property such as conductivity or diffusivity, that depends upon how the different constituents or
components are arranged, the situation gets more complicated, as is discussed in Section 4.3, below.

The simplest mixture rule is that of Bruggeman [61,41] which is

¢ = X v, (55)

i

where ¢ is the particular property of interest for the mixture, ¢, is the property of the ith component,
v, is the volume fraction [m*/m?] of the ith component, and m is a dimensionless constant having a
value between -1 and +1. The components of a mixture are often stated in terms of the mass
fraction w, [kg/kg]. The volume fraction and the mass fraction are related to each other by

V. P, w./p,
o, = i and i

X v e > wlp, (56)

where p; is the density of the ith component, E v, = 1, and Z w, = L

A rather versatile mixture rule is that of Hamilton and Crosser [62] who suggest that the property
(they were interested in thermal conductivity) of a two-component mixture be expressed as

d)z + (T] - l)d)l - (T] - 1)V2(¢| - ¢2)
d)z + (T] - 1)¢1 + vz(d)l - d)z)

¢ = ¢, ; (57)

where component 1 is the continuous component and 1 is an empirical constant. Harmathy [41] has
rewritten this expression in the form

vid, + Yv,,
¢ = , (58)
Vi t YV,
where
y = no 59
(n - 1)¢1 + (bz ( )
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depends upon 1 and upon the property value for the two components, but does not depend upon the
volume fractions of the components. When 1 - =, Egs. (58) and (59) reduce to the form of Eq. (55)
with m = 1. When 1 - 1, they reduce to the form of Eq. (5§5) with m = -1. Other limits of these
mixture equations are examined in Section 4.3, below.

4.1 Mass, Volume, and Density

The density p of a mixture is given simply by Eq. (55) with m = 1, which is the same as Eq. (58) with
vy =1:
P=2vp, (60)

where p, is the density of the ith component. The overall porosity of a composite solid consisting
of several porous components is

P=XvP (61)
where P, is the porosity of the ith component.

Harmathy [41, pp. 75-84] states that the bulk density of cement paste can be predicted from the
equation
W o+ W 1+ (WH/WC)C

= = , 62
P W.ilp, + W, /p, Up, + (W/W)H( + A)lp, 62)

where W, is the mass [kg] of cement in the original cement mixture, W, is the “effective” [41] mass
[kg] of water in the original mixture, W, is the mass [kg] of non-evaporable water, as determined by
drying over dry ice, for the cement paste in its present condition, W,, = W, (1 + A) is the “adjusted”
mass [kg] of water in the original mixture, Wn is the mass [kg] of non-evaporable water that would
be present on complete hydration of the cement paste, A is the mass [kg/kg] of water, relative to W,,
that would fill the voids created by entrained or entrapped air in the original mixture, p, =
3150 kg/m” is the true density of the solid cement used to make the paste, p,, = 1000 kg/m? is the
density of free water and capillary water, and ¢ [dimensionless] is a measure of the extent of
hydration of the cement paste.

Since, for the present project, the room-temperature mass, volume, and bulk density of concrete
specimens can easily be determined simply by measuring the mass and volume of a specimen, there
is no need to examine further any correlations to attempt to predict these room-temperature values
from the composition of the concrete.

The bulk density of a material at elevated temperatures can be computed as

W(T )W,
P(T) = py 3
[1 + AKT)/,]

(63)
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where p, is the room temperature density, W(T')/W, is the ratio of the mass of a specimen at
temperature 7 to the room temperature mass, usually obtained by thermogravimetry (TG), and
Al(T )/, is the linear thermal expansion of a specimen at temperature 7, usually obtained by
dilatometry. The form of Eq. (63) implicitly includes the assumption that specimens have been at
temperature long enough to reach steady-state conditions, i.e., long enough for moisture to be driven
off or for chemical reactions, such as dehydration, to come to completion. Otherwise, the density
will depend upon the thermal history of the material.

Assuming such steady-state conditions, the mass of the concrete is simply the sum of the masses of
its constituents so that W(T')/W, is easily computed from the corresponding curves for the various

constituents -- cement paste, fine aggregate, and coarse aggregate.

The linear-thermal-expansion coefficient is defined, at constant pressure P, as

o = l _a£
t\oT), ’ (64)
where ( is length and T is temperature. The volumetric expansion coefficient is
V\ oT p p\aT p ’ (65)

where V is volume and, as before, p is density. If the material is isotropic, = 3«.

Normally coefficients of thermal expansion are not measured directly but are obtained by
differentiation of curves of measured length versus temperature. For example, the observed change
in length might be represented by a least-squares-fit power series such as

=a, +aT +a,T*+aT?+-+- | (66)

where {; is the length at a reference temperature such as 20 °C. Then the linear thermal expansion
coefficient would be computed as

a, +2a,T + 3a3T2 +oe
o = .
I +a0+alT+a2T2"' (67)

For the present project, it is really not necessary to compute thermal expansion coefficients since the
density of concrete can be computed from Al/{,, as shown in Eq. (63). However, in the literature,
correlations for predicting the thermal expansion of mixtures are expressed in terms of expansion
coefficients rather than Af.

Turner [63] recommended that the thermal expansion coefficient of a mixture of isotropic
constituents be computed using
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E o, B;w/p,

i ZBiwi/pi , ©®
where o, B,, w,, and p, are, respectively, the coefficient of linear thermal expansion [m m' K],
the bulk modulus [Pa], the mass fraction [kg/kg], and the density [kg/m’] of the ith component. This
equation implicitly assumes that thermal shear stresses are low enough to be neglected, which may
be the case for concrete since cement paste has a low shear modulus. If the bulk moduli are not
known but it can be assumed that the various components of the mixture have similar values of
Poisson’s ratio, the bulk moduli will be nearly proportional to the corresponding Young’s moduli
and the Young’s moduli, rather than bulk moduli, can be used in Eq. (68). If it can be assumed that
all of the components of the mixture have very similar bulk moduli, Eq. (68) reduces to

=) v, (69)

i

where v, is the volume fraction of the ith component. This simple mixing rule corresponds to the
Bruggeman rule (Eq. (55) with m = 1 and to the Hamilton-Crosser rule (Egs. (58) and (59)) with
y =1 (n ~«). For normal strength or high strength concrete, the curve of thermal expansion versus
temperature tends to be rather similar to that of the principal aggregate, which typically occupies
roughly 70 percent of the volume of the concrete.

Equations (68) and (69) are known to provide bounds on the thermal expansion coefficient of
composite materials. There are other, more complicated, formulae in the technical literature [64-68]
that provide somewhat tighter bounds than these two equations. Some of these expressions require
knowledge of the shear modulus of each of the constituents, in addition to the bulk modulus. In
general, such information will not be available and so these other expressions are of little practical
value for the present project. The bulk modulus of different rocks or minerals that might be used
as aggregates vary considerably with their origin and their porosity [51] so that even Eq. (68) is of
rather limited value unless bulk modulus data are available for the particular lot of aggregate. Since
it is much easier to measure high temperature thermal expansion than it is to measure high
temperature bulk modulus, Eq. (68) and the other expressions referred to at the beginning of this
paragraph are of limited use.

Typical normal strength concretes expand in length by roughly 0.5 to 1.5 percent between room
temperature and 1000 °C, corresponding to a decrease in density of roughly 1.5 to 4.5 percent. Thus,
for the purposes of this project, it is not necessary to know the thermal expansion of the concrete
very accurately. If approximate values for the bulk moduli of the constituents are known, Eq. (68)
is probably the most practical formula for predicting the density of the concrete. Otherwise, the
simple rule of mixtures, Eq. (69), should provide a fairly reliable estimate.

4.2 Enthalpy, Specific Heat, and Heats of Reaction

The good news is that (1) the enthalpy of a mixture of materials, such as those contained in concrete,
can be computed from the masses and enthalpies of the individual components, provided that the
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degree of hydration is known or measured; (2) the sensible specific heat will not vary much with
changes in type and quantity of aggregate; and (3) the heat of sorption for water will not differ much
from the heat of vaporization except for extremely small pores and any difference can be estimated
theoretically from the pore size. The bad news is that the rate of heat release or absorption due to
chemical reactions will vary with temperature, rate of temperature rise, degree of hydration, absorbed
moisture content, and pore pressure.

The specific heat of a mixture does not depend upon how the components are distributed but simply
upon the mass fraction and the specific heat of each component:

C = Z w,C, . (70)

Harmathy [41] has described a detailed approach to estimating the specific heat of the various
constituents of concrete, cement paste, fine aggregate, and coarse aggregate from the estimated
chemical composition of each constituent and then computing the specific heat of concrete using
Eq. (70). He goes into considerable detail and it does not seem necessary to replicate his work here.
It is recommended that this approach be used for the present project, supplemented by experimental
verifications.

In Harmathy’s method of computing specific heats, he includes the enthalpy associated with release
of water of hydration as part of an effective specific heat. In the PCA model for predicting
temperatures and pore pressures of concrete exposed to fire conditions, that enthalpy is handled
separately from the sensible specific heat of the concrete. Thus care will be required to ensure that
the specific heats that are computed treat heats of vaporization, heats of sorption, and heats of
dehydration in a manner consistent with that used in the model.

4.3 Thermal Conductivity and Thermal Diffusivity

Heat transfer through a two-component medium, in the absence of large-scale convection, can be
considered as having three mechanisms: (a) true thermal conduction through the continuous and
discontinuous components, (b) natural thermal convection within the pores or cells of the material,
and (c) thermal radiation within the continuous and/or the discontinuous components. These several
components of heat transfer are additive but in general are not independent. For a material with
reasonably small cells or pores, such as concrete, heat transfer due to natural convection within the
pores is small and can either be neglected or can be lumped in with the true conduction component.
Large-scale convection, e.g., due to air and water vapor being driven through the concrete by a
gradient in pore pressure is not explicitly considered in this section.

Since the sensible portion of the specific heat of concrete will not vary greatly with changes in the
type and quantity of aggregate or even with degree of dehydration, the thermal conductivity and the
thermal diffusivity will be affected in similar amounts by changes in the concrete. For concrete, both
of these thermal transport properties are relatively weak functions of temperature, but they will
change quite significantly as functions of porosity, absorbed moisture content, and extent of
dehydration. Heating of concrete will result in differential thermal expansion between the cement
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paste (which shrinks as it is heated) and the fine and coarse aggregates. Such expansion can greatly
affect thermal contact resistance at the interfaces between different components and hence
significantly change both thermal conductivity and thermal diffusivity. Pore pressure probably
would not directly affect these properties very much but it will affect the extent of dehydration and
the absorbed moisture content and thus could indirectly cause significant changes in thermal
conductivity and thermal diffusivity.

Thermal conductivity is defined in terms of the ratio of the heat flux to the temperature gradient, in
the absence of any mass flow. In general, there is no practical way to stop mass flow from occurring.
For materials with low permeability and low mass diffusivity, the diffusive mass flow may be small
enough that it should be possible to carry out transient thermal tests to determine thermal
conductivity and/or thermal diffusivity before significant mass transfer can occur. However,
evaporation and subsequent condensation of moisture can transfer large quantities of heat even for
small mass flows so separation of conducted heat from the heat associated with mass transfer can
be very difficult and tricky.

For a homogeneous material, thermal conductivity is defined as
A =-L
vT (71)
where ¢ is the heat flux and VT is the temperature gradient. For a heterogeneous material, this
definition is extended to

A, =1
effective ( VT) (72)

where { VT') is the average value of the temperature gradient over a region large in comparison with
the size of the inhomogeneities. Unless the sample is large in comparison with the inhomogeneities,

it is scarcely meaningful to attempt to define an effective thermal conductivity.

In a multi-component material the effective thermal conductivity will depend upon:

—

. The thermal conductivity of each component.
2. The proportions of each component.
3. The manner in which the components are distributed; in particular
a. whether or not the component is continuous in the direction of heat flow,
b. whether the component distribution is ordered or random,
c. the size, shape, and orientation of each segment of each component.
4. The nature of the contacts between the different components.
5. The emissive and absorptive properties of the components if there is significant radiative
heat transfer through one or more of the components.

The problem of computing the effective thermal conductivity of a mixture from the thermal
conductivities of the components is mathematically the same as the problem of computing the
electrical conductivity, dielectric constant, or magnetic permeability of a heterogeneous mixture.
There exists a large body of pertinent literature, much of which is covered in review articles [69-76].
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The following discussion covers a few of the available mathematical relations for correlating the
effective thermal conductivity of a mixture with the thermal conductivities of the individual
components.

The simplest model for purposes of analysis is that in which the two components are arrayed in
alternative parallel layers as shown in Figure 49. If the heat flow is parallel to the layers, the
effective thermal conductivity 1s given by

A=fA v (73)

where f| ar'ldf2 are the volume fractions of the components having thermal conductivities A, and A,,
respectively; this expression is simply the Bruggeman mixture rule, Eq. (55), with m = 1. If the heat
flow is perpendicular to the component layers,

A A,

A‘:_____l._._—.
LA+ hA

this expression is the Bruggeman mixture rule with m = - 1. Equations (73) and (74) represent the
extreme limits of the thermal conductivity of a two-component mixture. These limits are shown in
Figure 50 for the case A, = 10 A,. Although both Eq. (73) and (74) predict thermal conductivity
values intermediate between the conductivities of the individual components, the conductivity
obtained is very different for the two cases. Thus these limits are of relatively little use except for
laminated materials.

; (74)

Heat flow
parallel to
layers

Heat flow

perpendicularto ———»
layers

Y

T Y
R
Y

oy

Figure 49. Two-phase material with phases distributed as parallel slabs.
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Figure 50. Effective thermal conductivity of a laminated material with heat flow parallel or
perpendicular to laminations.

[t is possible to obtain tighter limits for the thermal conductivity of a two-component mixture by
calculating the apparent effective conductivity by each of two simple methods:

Series Slabs

The material is divided into thin slabs perpendicular to the direction of principal heat flow.
The effective conductivity of each slab is computed by assuming that the two components act
as conductors in parallel. The effective conductivity of the mixture is then computed by
assuming that the slabs act as conductors in series.

Parallel Tubes

The material is divided into thin tubes or rods parallel to the direction of principal heat flow.
The effective conductivity of each tube is computed by assuming-a that the two components
act as conductors in series. The effective conductivity of the mixture is then computed by
assuming that the tubes act as conductors in parallel.

Jackson and Coriell [77] have shown that these two methods provide upper and lower bounds for
the true effective conductivity of a mixture. In order to calculate these bounds it is necessary to
assume some sort of model representing the manner in which the components are deployed. Several
investigators have represented a disperse second component by a cubic array of cubes as shown in
Figure 51. The two methods described above can then be used to calculate limits for the effective
conductivity of the mixture. Since there is some confusion in the literature on these calculations, it
is worthwhile to spell out the steps and assumptions involved.
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Figure 51. Cross-section of the model in which a disperse second phase is considered to be a cubic
array of cubes. |

Series Slabs

1. As shown in Figure 51, the mixture 1s divided into slabs (A) containing no disperse second
component and into slabs (B) containing both continuous and disperse components. The
effective conductivity of the B-slabs 1s computed, using Eq. (73), by assuming the disperse and
continuous components act as conductors in parallel:

A‘B = Pa A'd * (1 B Pa))\'c
where P, is the fraction of the total area which contains the disperse component of

conductivity A, and (1 - P,) is the fraction of the area which contains the continuous
component of conductivity A,
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2. The effective conductivity of the mixture is computed, using Eq. (74), by taking the A-slabs
and the B-slabs in series:

A‘A)"B
P i, + (1~ P)A,

where A, = A,, A, was given above, and P, is the fraction of the total length containing the
disperse component. Evaluation of this equation yields

A (1-P)+P A
A (1-P,+P,P)+P (1-P)AIL (75)

Parallel Tubes

1. In this approximation, the mixture is divided into parallel "tubes" (A) containing no disperse
second component and "tubes" (B) containing, both components.

2. The effective conductivity of the B-tubes is computed, using Eq. (74), by assuming the
disperse and continuous components to be in series:

_ AL‘)\'d
PA, + (1 - P)A,

3. The effective conductivity of the mixture is computed, using Eq. (73), by assuming the A-
tubes and B-tubes to be in parallel:

A =P Ay + (1 -P)A,
Evaluation of this equation yields:

P, (1 -P) + (1 =P, +PP)AJA

A
A P, + (1 + P)AJA, ' (76)

In the above derivations, it was stated that the model was a cubic array of cubes. In fact, it is not
necessary to be so restrictive. For Eq. (75) to be valid, it is only necessary that the model can be
divided into two types of slabs (perpendicular to the flow of heat)-one containing no disperse
component and one having a fraction, P,, of disperse component which can be distributed in any
manner. For Eq. (76) to be valid, it is only necessary that the model can be divided into-the two
types of "tubes" (parallel to the flow of heat). Thus Egs. (75) and (76) are, in principle, also
applicable to dispersions of, for example, fibers or platelets oriented parallel or perpendicular to the
flow of heat. However, these equations will not necessarily bound the true effective conductivity
unless both are based on the same component deployment.
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For a disperse component in the form of cubes, or in which cubes may be used to approximate an
isometric disperse component, equations (75) and (76) may be recast in terms of the volumetric
fraction of disperse component, which is designated as f. For the model used, itis easily seen that P, = /'
and P, = f*?; with these substitutions, the forms usually seen are obtained:

Series Slabs

}\, ) (1 _ f2/3) +]02/3 A’d/kt

o (- ) U A, 7
Parallel Tubes

A () (L= Y YA

A‘c fl/3 + (1 _ f”3)A‘d/}"C (78)

Although one would appear to be, on the face of things, considering a fairly complicated model in
deriving Egs. (77) to (78), alittle thought reveals that the model reduces to the two simple electrical
networks shown in Figure 51. In the series-slabs model, one effectively assumes that the continuous
component has an infinite thermal conductivity normal to the principal flow of heat; thus this
approach, resulting in Eqs. (75) and (77), always overestimates the effective thermal conductivity.
In the parallel-tubes model, one effectively assumes that the continuous component has zero thermal
conductivity normal to the principal flow of heat; thus this approach, resulting in Egs. (76) and (78),
always underestimates the effective thermal conductivity.

Maxwell derived an expression for the conductivity of a two-component dispersion of spherical
particles of conductivity A, imbedded in a medium of conductivity A.. This expression is rigorously
valid for dilute dispersions where the average distance between dispersed particles is much larger
than the particle size. Maxwell's relation can be written in the form:

ao 2-2f + (1 +2f)A0A,

TC_ 2+ f+ (1 = f)A/A, ' (79)

The behavior of Eq. (79) for small f is more easily seen by expanding it in the form:

A 3F(1 - A /) 3FE(1 - AR
_— = + R
A, 2+ A A, (2 + A‘d/}“c)z

©, fel o (80)

In Figure 52, the predictions of the series-slabs expression (Eq. (73)), the parallel-tubes expression
(Eq. (74)), and the -Maxwell dilute dispersion expression (Eq. (79)) are compared for the case
f=0.1. For values of A,/A near 1, all three expressions agree. However, if the thermal
conductivities of the two components differ significantly, the series-slabs and parallel-tubes
expressions disagree with the Maxwell expression, which should be very accurate for f < 0. 1.

To predict the thermal conductivity of a dispersion having less than about 0. 1 volume fraction of
isometric dispersed component imbedded in an isotropic continuous component, one should use the

65



07 | L |
0.01 0.1 1.0 10 100

Ao/ Ae

Figure 52. Computed effective conductivity of a dispersion of 0.1 volume fraction of a material of
conductivity A, in a continuous matrix of material of conductivity A,.

S Series-slabs expression, Eq. (77)
P Parallel-tubes expression, Eq. (78)
M Maxwell dilute expression, Eq. (79)

Maxwell dilute dispersion expression, Eq. (79) or (80). The expressions obtained {rom the cubic
array of cubes, Egs. (75) to (79), should not be used for dilute dispersions in media having an
isotropic continuous component. For anisotropic media, the Maxwell expression would have to be
modified. For highly anisotropic media, the implicit assumptions of either infinite or zero lateral
thermal conductivity of the continuous component might be more nearly met so that one of the
series-slabs or the parallel-tubes expressions (Egs. (75) to (79)) might be more accurate than in
isotropic materials. For heat conduction in the poorest conducting direction, the series-slabs
expressions, Eqs. (73) and (75), should be more accurate while for heat conduction in the best-
conducting direction, the parallel-tubes expressions, Eqs. (74) and (76) should be more accurate.

The two expressions (Egs. (77) and (78)) derived from the model of a cubic array of cubes disagree
seriously with one another in the limiting case of small volume fractions of disperse component.
However, for volume fractions of the disperse component approaching unity, Eqgs. (77) and (78)
converge to a common expression which, quite interestingly, is identical to the Maxwell dilute
dispersion expression, Eq. (74).
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A special case of interest is the effect of porosity on thermal conductivity. If the thermal
conductivity of the continuous material is much greater than the effective conductivity of the pores,
A, /A, = 0 and the above expressions reduce to:

Series-Slabs

e
i = L A, <« A, (81)
S
which for small f reduces to
Ay B A A
o A A RN (82)
Parallel-Tubes
A
T = 1 ‘f2/3 s A‘d « A‘c . (83)
Maxwell Dilute Dispersion
A 2-2f
N MR (84)
which for small f reduces to
A 3 3 5
-—)*::]—-z—f+5f—“',)\.d«)\.c. (85)

In Figure 53 the predictions of Eqs. (81), (83), and (84) are shown for void volume fractions up to
0.1. Over this porosity range the Maxwell equation should be rather accurate if the porosity is in the
form of dispersed, disconnected, isometric pores. For cement paste and porous aggregates, this
generally will not be the case and Eq. (84) should then serve only as an upper limit for the effective
thermal conductivity of a porous material.

For dispersions which are sufficiently dilute for Eq. (79) to be valid, neither the size distribution of
the disperse particles nor the manner in which they are deployed are of consequence. However, these
factors must be considered if the concentration of the dispersed component is increased. Lord
Rayleigh treated the case of uniform spheres arrayed in a cubic lattice distribution. Meredith and
Tobias extended Rayleigh's derivation by an additional term and obtained [70]:

Ao 3
A, 2+ Ah 13151 = A /A ) f1o7 (86)
1 = A /A, 473 + Ay + 0409 (1 + A /AN fTR
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Figure 53. The effect of porosity on thermal conductivity as computed by:

S Series-slabs expression, Eq. (81)
P Parallel-tubes expression, Eq. (83)
M Maxwell dilute expression, Eq. (84)

for the conductivity normal to a side of the cube. If the term involving f'*? in the denominator of
the right hand side is dropped, this expression reduces to the Maxwell dilute dispersion expression,
Eq. (79). Equation (86) should be more accurate than Eq. (79) for values of f up to n/6 =0.524,
which is the maximum possible value for a cubic array of spheres.

A rigorous solution for the effective conductivity of a concentrated random array of particles of
varying sizes has not been achieved. Several approximations have been developed which are useful
in many cases. Bruggeman (see, e.g., [61,69-70]) developed an expression,

1/3
A -1 -f (87)
- A\ A

which has proved rather effective in predicting the conductivity of a dispersion containing a wide
range of particle sizes. For A, - 0, Eq. (87) reduces to
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%:(l—f)yz , A’d«}‘c , (88)
while ford, - o,

A 1

R S T T

Aot )

For a concentrated dispersion containing only a narrow range of particle sizes, the Bruggeman
variable dispersion expression (Eq. (87)) tends to. overestimate the effect of the disperse component
while the Maxwell expression (Eq. (74)) tends to underestimate. Meridith and Tobias [70] suggested
an alternative semiempirical expression that predicts conductivity values intermediate between the
Bruggeman variable dispersion equation and the Maxwell dilute dispersion equation:

A |2+ 2) 20, - DFLL@ - HGA +2) 2, - D 0
A L2+ 2) = A, - DFT@ - DA, +2) = (lh, - DS 0
which reduces to:
A _82-HU- 4
Ao (A4 -fy 4T T Ob
and
A A+ )2+ f) 1w A
A (0 -pH@e-f T 92)

Meredith and Tobias [70] contrast the predictions of the various expressions given above. For a
given two-component system, all of these expressions predict two different conductivities, dependent
on which component is assumed to be disperse. Bruggeman (see [61,69]) derived another
approximate expression that should be applicable to mixtures where neither component is necessarily
continuous:

Ay - A Ay = A

I S SR
Y A+ 24 L Ay + 2A ©3)

In Figure 54, the predictions of the Bruggeman mixture equations are compared with those from the
Maxwell dilute dispersion equation. It is seen that for small values of f,, the Bruggeman mixture
equation is in agreement with a dilute dispersion of particles of conductivity A, in a matrix of
conductivity A,, while for values of f, approaching unity the mixture equation predicts a conductivity
due to particles of conductivity A, dispersed in a matrix of conductivity A,.

There have not been enough accurate measurements of the thermal conductivity of well-
characterized concretes to provide adequate experimental confirmation of any of the above
equations. For well-defined systems (such as spheres dispersed in a continuous matrix) which are
in good correspondence to the models used in deriving these equations, measurements of electrical
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Figure 54. Computed effective thermal conductivity of a mixture.

B Bruggeman mixture expression, Eq. (93)
H  Maxwell dilute dispersion expression, Eq. (79), high-conductivity phase continuous
L Maxwell dilute dispersion expression, Eq. (79), low-conductivity phase continuous

conductivity or dielectric constant have shown good agreement with the theoretical predictions of
these equations. Concretes, in general, cannot be readily described in terms of a simple model such
as spheres dispersed in a uniform medium, and hence in many cases the expressions cited above will
indicate qualitatively the effect of an additional component but should not be relied upon for accurate
quantitative predictions.
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5. Experimental Techniques for Determination of Thermal Properties

5.1 Mass, Volume, and Density

At room temperature, the mass is easily determined by conventional weighing techniques and the
volume easily computed from the measured dimensions of a specimen of well-defined geometry.
The bulk density of the specimen is then computed from the mass and volume. In this report, the
determination of porosity and of “true” density are not addressed.

The change in mass as a specimen is heated is conventionally determined using thermogravimetry
(TG or TGA), which is a fancy way of saying that the sample is weighed while it is being heated.
There are numerous commercial TGA apparatus available. Typically, a crucible containing the
sample material is suspended, inside a vertical tube furnace, from a wire connected to an electronic
balance above the furnace. The furnace is equipped with a temperature controller that permits
increasing the furnace temperature at a pre-selected constant rate. Provision is made to minimize
convection effects on the weighing process and to measure the sample temperature. Usually the
furnace is purged with air or some other gas, at a very slow rate, to remove gases that evolve from
the test sample. Some TGA apparatus is designed so that the pressure of the gas surrounding the
sample can be controlled over a broad range.

Concrete and its components present a few challenges that homogeneous materials do not. Because
concrete is a mixture, with the large aggregate typically being 1 to 5 cm in mean diameter, it is either
necessary to use a rather large test sample of solid concrete in order to be statistically reliable or else
it is necessary to grind up a large sample into a powder, blend it thoroughly, and test a small portion
of the powder. Using a large sample of solid concrete presents several difficulties: (1) many TGA
apparatus cannot handle a large sample, (2) a large sample will not be isothermal and it is therefore
difficult to know what temperature to assign to the test results, and (3) a large sample will retard the
evolution of gas —e.g., released water of hydration — from within the sample. Typically, one would
expect TGA test results on large solid samples to be dependent upon the sample geometry and size,
as well as upon the rate of heating. Using a small powdered sample means that the average
temperature of the sample will be close to the temperature of the crucible and that the gas evolving
from the sample can easily escape. However, mass loss data taken on a small powdered sample
would not be representative of how the concrete would behave under fire conditions.

Rather than carrying out measurements on a solid or powdered sample of concrete, an alternative
approach for determining mass change versus temperature is to measure, separately, the mass change
of each of the components — cement paste, fine aggregate, and coarse aggregate — and compute the
expected mass change for the concrete mixture. Unless fairly large samples can be tested, this latter
approach is probably best, not only for mass change but for specific heat and heats of reaction.

As explained in Section 4.1, the change in volume due to heating is usually computed from data on
the linear thermal expansion of a suitably large sample. Various techniques for measuring thermal
expansion to high temperatures are described in [78-82]. Interferometric techniques, capacitance
cells, and X-ray diffraction are more complex and expensive than necessary for engineering materials
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such as ceramics or concrete. Thermal expansion measurements can be made using optical
techniques, ranging from the use of a cathetometer to measure the change in position of fiducial
marks on the specimen, to the use of more sophisticated laser equipment However, the simplest
technique, and certainly the most commonly used technique, is push rod dilatometry. In this method
the relative expansion of the specimen is transmitted out of the furnace using tubes or rods of some
stable material. As described by Kirby [80], there are three variations of push rod dilatometry, with
differential dilatometry being the preferred approach whenever possible. In differential dilatometry,
the thermal expansion of the test specimen and the thermal expansion of a reference specimen, of
nominally the same length, are brought out of the furnace using nominally identical push rods. Since
the push rods hopefully experience the same longitudinal temperature distribution, their thermal
expansions should be very nearly identical. Thus, the relative motion of the room-temperature ends
of the push rods will be due to the relative thermal expansion of the test specimen and the (known)
reference specimen.

Most high-temperature dilatometers use specimens no larger than 5 mm in diameter by 50 mm long.
Considering that the high-strength concrete of interest to NIST in this project will have coarse
aggregate nominally 13 mm in size, thermal expansion specimens of the order of 100 to 200 mm in
length should be used if possible. If no other laboratory can handle such large specimens, it would
not be too difficult to build a dilatometer at NIST that could handle such sizes.

5.2 Enthalpy, Specific Heat, and Heats of Reaction

There are numerous methods for determining specific heat and heats of reaction[83-93]. Most of
the high-temperature techniques that would be suitable for concrete or its constituents are painfully
slow and therefore data acquisition is expensive. An exception is differential scanning calorimetry
(DSC), which is now the most commonly used procedure for measuring specific heat and for
studying reaction kinetics. Most DSC equipment uses very small samples, typically a fraction of a
gram in the form of powder, and can only handle measurements up to about 600 °C. For a material
such as concrete, it would be very difficult to obtain representative samples of such small size.
There are, however, a few commercial instruments that can accommodate large enough samples to
be representative of concrete and that can make measurements at temperatures up to 1200 °C or
higher. While the sensible heat capacity would not vary significantly with pressure, the reaction
kinetics may be seriously affected by the high pore pressures that may occur in concrete exposed to
fire conditions. Almost all commercial TGA and DSC equipment operates at atmospheric pressure
or below. If commercial equipment can be found that can measure larger samples under controlled
pressures, the enthalpy and mass loss measurements should be relatively straightforward. An
alternative to using a pressurized system would be to measure on solid specimens of sufficient size
that there will be significant internal pore pressures.

5.3 Thermal Conductivity and Thermal Diffusivity

In determining thermal conductivity or thermal diffusivity of concrete, it is important to recognize
and deal with the influence of moisture migration. Traditionally, most thermal conductivity
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measurements are made under steady-state conditions with thermal conductivity being computed
from a geometrical factor, a heat input, and a temperature difference. The apparatus is operated
either under conditions of constant heat input, with the resultant temperature difference being
measured, or under conditions of constant temperature difference, with the resultant required heat
flux being measured. Under such conditions, it may not be possible to measure the thermal
conductivity corresponding to a given uniform moisture content in the specimen since the imposed
temperature gradient can drive the moisture to the cold side of the specimen where it will collect or
escape, depending upon the experimental configuration. Sometimes the moisture migration is
sufficiently slow that it appears as if steady-state conditions have been achieved but the data may not
yield appropriate thermal conductivity values.

For moist materials, it often 1s preferable to determine the apparent thermal conductivity or apparent
thermal diffusivity under transient or periodic conditions so that data can be acquired without the
moisture being driven away. Considerable care and understanding are required to ensure that the
technique selected will yield property values that are appropriate for the end-use application.
Analysis and interpretation of the results obtained from transient or periodic tests requires caution
and an understanding of the limitations of the technique selected. For example, the differential
equation that describes conductive heat transfer in an isotropic material of thermal conductivity A,
density p, and specific heat C is V-(AVT) = pC(37/0¢), where T is temperature and ¢ is time. If the
thermal conductivity is independent of position and of temperature, it may be factored out on the left-
hand side, yielding V*T = (1/k)(07T/0t), where k = A/pC is the thermal diffusivity. Thermal
diffusivity is a questionable parameter if the thermal conductivity is not constant or if there are terms
in the differential equation representing other forms of heat transfer, such as radiation or, in the
present context, heat transfer associated with moisture migration. Even if an apparent thermal
diffusivity is defined for a given test method, analysis would be required to determine whether or
not it would be appropriate for use in predicting heat transfer under field use conditions. In general,
it is better to use the appropriate analysis of the experimental data to obtain the volumetric specific
heat and the apparent thermal conductivity.

The first concern in most techniques for measuring thermal conductivity is to force the heat flow to
be unidirectional. Since, under steady-state conditions, heat flow is proportional to a geometric
factor, a thermal conductivity, and a temperature difference, the direction of heat flow must be
controlled by controlling one or more of these variables. The experimenter's freedom in adjusting
these parameters is constrained, sometimes severely, by the often-conflicting requirements of being
able to accurately measure total heat flow, geometry, and temperature differences. Very practical
considerations, such as available specimen size, frequently constitute severe constraints on apparatus
design.

It is not possible to directly measure the heat flow in a specimen; one must, rather, measure the heat
flow into a specimen or out of a specimen. This necessitates that not only must transverse heat losses
or gains from or to the specimen be prevented or accounted for but, further, there must be no
unaccounted-for losses or gains between the specimen and the location at which the heat flow is
measured. The most common method of measuring heat flow into a thermal conductivity specimen
is to measure the electrical power dissipated in a heater at the hotter end of the specimen. In other
"absolute” methods, the heat flow out of a specimen is sometimes measured by a "flow calorimeter,"

73



with which one observes the temperature rise and flow rate in a circulating liquid of known heat
capacity, or by a "boil-off calorimeter," with which one observes the boil-off rate of a fluid of known
heat of vaporization. In some types of apparatus, the heat flow is determined from the temperature
difference or gradient in another material of hopefully known thermal conductivity that hopefully
has the same heat flow; a special case of this type of apparatus would be one using a heat flow meter
that is calibrated using one or more specimens of known thermal conductivity. This investigator’s
bottom line on comparative versus absolute methods is that one should not use comparative methods,
including heat flow meter apparatus, unless there are absolute methods available that enable accurate
testing of calibration specimens of the same size, and under the same environmental conditions, as
are required in the comparison apparatus.

It is not possible to directly measure the temperature gradient in a specimen; one must, rather,
measure the temperature difference between two or more locations and then compute the average
temperature gradient. Consider a specimen held between a heat source and a heat sink. If the total
thermal resistance of the specimen is large compared with the thermal contact resistances between
the source and the specimen and between the specimen and the sink, then the temperature drop
across the specimen can be taken as equal to the temperature of the source minus the temperature
of the sink and it is not necessary to install temperature sensors in the specimen. However, if the
specimen has a low thermal resistance such that thermal contact resistances are not negligible, it is
necessary either to correct for these contact resistances or, what is usually done, to install
temperature sensors in the specimen.

Measurement techniques, both steady-state and non-steady-state, for determination of thermal
conductivity have been extensively reviewed [94,86,87]; for high-temperature measurements, the
state-of-the-art has not changed significantly since these reviews were completed. Many of the test
methods used for thermal conductivity and thermal diffusivity are described in the proceedings of
the International Thermal Conductivity Conference, dating back to 1961.

5.3.1 Steady-State Methods

Most thermal conductivity measurements are made under steady-state conditions, which typically
take some hours to achieve. For example, the NIST high-temperature guarded hot plate typically
takes 4 to 6 hours to reach steady state. By that time, most of the moisture would be driven out of
the specimen, so that the thermal conductivity values achieved would essentially correspond to a dry
state.

The vast majority of the various techniques for steady-state measurement of thermal conductivity
can be categorized under the headings given below (Types 1 through 7 utilize longitudinal heat
flow).

Type 1. Absolute axial heat flow in a rod

This type of apparatus usually use a specimen whose length is very long compared to its diameter,

with the specimen held coaxially in a guard cylinder whose inside diameter is typically two to four
times the specimen diameter, the space between the specimen and the guard being filled with thermal
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insulation. Such apparatus is mainly intended for good thermal conductors, such as metals or high
density, high purity ceramics. For materials such as concrete that have quite low thermal
conductivity, it would be very difficult to provide adequate guarding, particularly at high
temperatures where the thermal conductivity of available insulations is not much lower than that of
concretes. In addition, the time to reach thermal equilibrium increases approximately as the square
of the specimen length so that long specimens should not be used when it is desired to attain
equilibrium before moisture is driven off.

Type 2. Comparative cut-bar apparatus

This type of apparatus typically uses a specimen whose length is comparable (within a factor of, say,
2) with its diameter. The specimen is placed between two rods of known thermal conductivity and
the thermal conductivity of the specimen computed from the ratio of the temperature gradients in the
known and unknown specimens. As for Type 1 equipment, a coaxial guard and thermal insulation
are used to control heat gains or losses. This design avoids the problems of providing the specimen
with an attached heater and heat sink. Depending upon the thermal resistance of the specimen,
thermocouples may be installed in it or the temperature difference across the unknown specimen may
be computed by extrapolation of temperatures measured in the known specimens. For low-thermal-
conductivity materials, adequate guarding is difficult. For the thermal conductivity range of
concrete, there are not suitable reference materials over the temperature range of interest.

Type 3. Absolute cut-bar apparatus

This type of apparatus can accommodate specimens of similar geometry to those that are used in
comparative cut-bar apparatus. However, the apparatus is “absolute,” in that the heat flow is
determined by measuring the input power to an electrical heater. The only apparatus of this type of
which the principal investigator is aware is the one he designed and built at NBS in the early 1960s.
By use of sophisticated mathematical analysis and careful experimental procedures, good data were
acquired at temperatures up to 1200 °C. In order to make accurate measurements on a material with
as low a thermal conductivity as that of concrete, a fairly large (e.g., 10 cm) specimen diameter
would be required.

Type 4. Guarded hot plate apparatus

This type of apparatus, intended for use on specimens having relatively low thermal conductivity,
utilizes a circular or square specimen whose diameter or edge length is typically an order of
magnitude larger than the thickness of the specimen. A guarded hot plate apparatus consists of a
heated metering plate, which may be square or circular, separated by a narrow insulating gap from
a surrounding coplanar guard plate. Typically, similar specimens are placed on either side of the hot
plate; the outside surfaces of the specimen are held between constant temperature cold plates. In
operation, the electrical power input to the guard plate is adjusted, usually automatically, so that a
multiple-junction differential thermocouple spanning the guard gap has zero output, indicating that
there is no temperature difference across the guard gap. Thus the electrically generated heat input
to the metering plate flows perpendicularly from both sides of the plate through the specimens to the
cold plates. Guarded hot plate apparatus are typically quite reliable at moderate temperatures but
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the agreement among different laboratories is not very good at elevated temperatures. The current
high-temperature guarded hot plate apparatus at NIST can only be used to about 450 °C. NIST plans
to design and build guarded hot plate apparatus for use to about 1200 °C, but that project will require
several years. The only commercial high-temperature guarded hot plate apparatus that have been
available in recent years are the Holometrix Model GHP-200, which accommodates circular
specimens up to 20 cm in diameter, and the Holometrix Model GHP-300, for specimens up to 30 cm
square. With the higher-temperature heaters from Holometrix, both models are advertised for use
at temperatures up to 650 °C. Anter Laboratories plans to manufacture guarded hot plate apparatus
based on the design of equipment developed at the National Physical Laboratory (United Kingdom).
All such guarded hot plate apparatus requires a long time to reach equilibrium, thus precluding the
possibility of obtaining valid thermal conductivity data before chemical reactions, such as loss of
water of hydration, take place.

Type 5. Unguarded hot plate apparatus

This type of apparatus is similar to a guarded hot plate apparatus but the hot plate is made so thin
and to have such a low lateral thermal conductance that is effectively self-guarding so that no
separate guard is required. The hot plate for such an apparatus has a low thermal capacity so that
it can have a fast thermal response, facilitating a rapid approach to thermal equilibrium. The absence
of a guard simplifies the design and the operation of this type of apparatus, as well as allows more
rapid operation. As will be discussed below under transient methods, an unguarded hot plate
apparatus can be operated in either steady-state or transient mode.

Type 6. Guarded flat plate calorimeter

This type of apparatus typically uses a specimen in the form of a flat slab whose thickness is much
less than its lateral dimensions. Rather than measure the electrical input to a heat on the hot side of
the specimen, a calorimeter is used to measure the heat flow from a central region on the colder side
of the specimen. Either a flow calorimeter or a boil-off calorimeter can be used. Since the heat
capacities and heats of vaporization of pure fluids are well known, such calorimeters can, at least in
principle, be quite accurate. The standardized flow calorimeter apparatus is known to have
significant errors for specimens having low thermal conductivity. A disadvantage of either type of
guarded flat plate calorimeter is that the colder side of the specimen remains at a temperature not too
much greater than that of the calorimetric fluid so that for high hot-side temperatures there is a very
large temperature difference across the specimen, making it more difficult to obtain accurate curves
of thermal conductivity versus temperature.

Type 7. Heat flow meter apparatus

This type of apparatus also uses a slab-shaped specimen, held between a hot plate and a cold plate.
A heat flow meter, which typically consists of a thin sheet of poorly conducting material with
provision to measure a signal that is proportional to a temperature difference through the meter, is
placed on one or both sides of the specimen. The apparatus is calibrated using specimens of known
thermal conductance. Such apparatus is the workhouse of the building insulation industry since it
can take data quite rapidly (typically it is operated with the hot and cold plates at fixed temperatures)
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and is easy to operate. There do not appear to be any commercial heat flow meters of adequate
sensitivity that can cover the temperature range of interest for this project. More critically, there are
no suitable reference standards that could be used to calibrate a high-temperature heat flow meter
apparatus.

Type 8. Radial heat flow apparatus

This type of apparatus typically uses a specimen in the form of a right circular cylinder, with heat
flow radially outward from a heater located in a hole along the axis of the specimen. For solid
specimens, it is customary to have temperature sensors located at different radii within the specimen,
usually at several angular positions. The apparatus may have end heaters to provide guarding or the
specimen may be long enough that it is self-guarding. Such equipment has been used quite
successfully on materials ranging from powders to solid ceramics to metals and at temperatures well
in excess of what is needed for the present project. Instrumenting the specimens typically is time
consuming and the apparatus requires a long time to reach thermal equilibrium.

5.3.2 Transient Methods

Thermal diffusivity, which is a measure of the speed of propagation of heat into a material during
changes of temperature with time, is arguably easier to measure than thermal conductivity since it
does not require a power or heat flow measurement and since it does not require waiting for thermal
equilibrium (steady-state) to occur. For materials and conditions where the only form of energy
transport is via heat conduction, under conditions where the thermal conductivity can be assumed
to be constant, and when the density and specific heat are very well known from other measurements,
it is reasonable to measure thermal diffusivity and compute thermal conductivity values. For the
present project, it is essential that thermal conductivity, not thermal diffusivity, be measured.
Referring back to earlier parts of this report, it is easy to see (p. 5) that Eq. (2) follows from Eq. (1)
if the thermal conductivity is constant. However, when there are other modes of energy transfer,
thermal diffusivity is not a viable concept. For example, in the energy conservation equation (p. 15,
Eq. (53)) for the Ahmed model, all of the material properties are complicated functions of
temperature (and possibly of time and pore pressure) so that one cannot combine thermal
conductivity and volumetric specific heat as a single property, such as thermal diffusivity. The
models that might be used to predict simultaneous heat and mass transfer in porous media require
thermal conductivity, not thermal diffusivity as a material property. Accordingly, thermal diffusivity
measurements are not further considered in this report.

With one notable exception, there have been relatively few investigations that used transient
techniques to obtain thermal conductivity directly (as opposed to measuring thermal diffusivity and
computing thermal conductivity). There is a very extensive body of literature on hot-wire or probe
methods of measuring thermal conductivity. These techniques have been used extensively for
measurements on liquids, where it is important to complete a measurement before significant
convection can occur, and for soils and rocks, where it is desired to complete a measurement before
there is significant moisture migration. We will also refer to the “transient strip method,” which is
effectively a variant of the hot-wire method. There have been some studies concerned with thermal
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conductivity measurements using one-dimensional transient heat flow through slabs of material; a
variant of this approach is considered to be the most viable one for the present project and therefore
such techniques are examined in some detail. Note that transient methods of measuring thermal
conductivity do require measurement of power or heat flow, which is not the case for thermal
diffusivity measurements.

Hot-Wire or Probe Methods

In the so-called hot-wire method, a heater wire is embedded in a specimen, or sandwiched between
two slabs. When the heater is turned on, its temperature-time history, or that of a nearby temperature
sensor, can be used to compute thermal transport properties. The values thus obtained correspond
to a small region of the specimen close to the heater wire and again there are serious questions as to
whether or not that small region is representative of a concrete sample with large aggregates.
Normally, one would want to have an effective specimen thickness, or effective probing depth, that
is roughly an order of magnitude larger than the largest aggregate.

The hot-wire technique and the variant known as or the probe method, both of which are sometimes
called the line-heat-source method, were reviewed in 1969 by Pratt [95] and, briefly, by Danielson
and Sidles [96]. At that time, the hot-wire method had been used mainly for fluids or for loose-fill
or blanket-type insulating material. During the period since these reviews were completed, there has
been rather extensive development, particularly in Europe, of the hot-wire method for use on
refractory materials, including firebrick. These developments have been reviewed by Davis [97].
Line heat source techniques have, over the past two decades, become the method of choice for most
determinations of the thermal conductivity of liquids. The probe method is a variant of the hot-wire
technique in which a heater and temperature sensor are packaged in arigid probe, or needle, that can
be inserted into the specimen material. Recently Wechsler [98] reviewed probe methods for use on
solids and insulating materials. Flynn has provided a recent extensive bibliography [99] of these
methods, which includes abstracts for almost 300 relevant papers and reports. In the early 1980s,
another group at NIST carried out an investigation of hot wire techniques for measuring the thermal
conductivity of refractory materials at high temperatures [100].

Because of the extensive use of this technique on moist materials, and because of its possible
applicability to the present project, a comprehensive discussion of the theoretical basis of this
method is included in Appendix A. This discussion includes consideration of the effects of contact
resistance between the probe and the specimen and the influence of the finite thermal capacity of the
probe on the temperature-versus-time curves that are used to determine thermal conductivity.

There are several variations of the hot-wire method. Sometimes a thermocouple is used to measure
the temperature rise of the heater wire with, typically, the thermocouple measuring junction being
welded to the heater wire and the thermocouple leads going off perpendicularly to the heater wire.
With regard to the present project, this approach has two major disadvantages. First, for a specimen
with a fairly low thermal conductivity, the thermocouple leads may carry heat away from the
junction, resulting in erroneous temperature measurement. Second, for an inhomogeneous material
such as concrete, the temperature along the heater wire may vary with position and the use of a
thermocouple at a single location provides very little averaging of that temperature distribution. A
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better approach is to use the heater wire as a resistance thermometer to measure its own temperature,
thus providing averaging over the region between the potential taps. A probe also may have either
one or more discrete temperature sensors or may use the heater as a resistance thermometer. For
radial heat flow in cylindrical coordinates, which is the goal with line-heat-source methods,
measurement of the temperature-versus-time history of the heat source can provide, at least for
homogeneous specimens, accurate data for thermal conductivity but can provide only very limited
accuracy for specific heat or for thermal diffusivity. Better accuracy can be obtained for these two
properties if the temperature is measured at a known radius from the axis of the heater, either instead
of or in addition to the temperature at the axis. Thus, a separate temperature sensor (thermocouple
orresistance thermometer), installed at a measured radius from the heater, 1s sometimes used instead
of, or perhaps in addition to, the sensor used to measure the heater temperature.

When the hot-wire technique is used on solid specimens, it is customary to sandwich the heater and
temperature sensors between two slabs of the specimen material, with one of them being grooved
to accommodate the wire(s). Usually, the heater s turned on and assumed to provide constant power
for the duration of the test. It is necessary for the specimens to be large enough that they can be
assumed to behave as an infinite body during the duration of the measurements.

Transient Strip and Transient Patch Methods

Gustafsson [101-103] and his colleagues have developed a variant of the hot-wire technique that uses
a narrow strip (typically a few millimeters wide) of pure metal as both a heater and a resistance
thermometer. Their “transient hot-strip method” has been used with a strip of foil sandwiched
between two specimens or by vapor deposition of a heater directly onto the specimen, the latter
approach resulting in an extremely thin heater. The authors argue [101] that: “The fraction of the
heat that is ‘hindered’ by the air-filled or oil-filled slots, created at the edges of the strip, when
pressing it between the two plane test pieces, is consequently negligible. To achieve a similarly
favourable geometrical configuration for the transient hot-wire method would be extremely difficult,
or impossible. This fact actually limits the hot-wire method to fluids or to such solids that can be
cast satisfactorily around the wire.”

Brydsten and Bickstrom [104]
developed atechnique wherein they
deposited two metal strips on the
specimen, with one strip serving as
a heater and the other strip serving >
as a resistance thermometer, as 2W —p+
shown in Figure 55.

:
L

!
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The operational procedures for

. _ Heater Thermometer
these two transient hot-strip
techniques are essentially the same
as those for the transient hot-wire Figure 55. Pattern of copper and nickel strips used by
or probe methods. Brydsten and Bickstrom [104]. The strip on the left is

the heater, and the strip on the right is the thermometer.
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Gustaffsson and his colleagues [105-106] also have developed a technique, which they call the
“transient plane source technique,” in which the heater is a circular or rectangular patch that
resembles a resistance strain gage. Since the heater does not cover the entire area of the specimen,
as is the case for the methods described below, it seems more appropriate to refer to this technique
as a transient patch method. Operationally, this technique is similar to the transient hot-wire and
transient hot-strip methods.

Transient Plane Source Methods

In this report, the term “transient plane source methods” is used to designate transient methods in
which the heater(s) is(are) nominally the same size, laterally, as the specimens and heat is
constrained, by edge insulation or guarding, to flow in one direction, say, parallel to the z-axis, in
Cartesian coordinates. Some of the possible boundary conditions for transient plane source methods
are shown in Figure 56 [107]. Only the techniques in which the heat input is measured will provide
values for thermal conductivity. The techniques with temperature boundary conditions can only
provide thermal diffusivity values.

Vernotte [108] suggested that the adiabatic boundary condition required for the boundary conditions
shown in Figure 56(a) could be achieved by using mirror images, as shown in Figure 57, where the
four slabs in the center of the stack are the specimen material and the ebonite slabs are intended to
provide thermal insulation. His assumption was that half of the power provided to each heater would
flow toward the center of the stack, resulting in the desired temperature-time history at the mid-plane
of the stack.

Constant heat input Constant heat input

l i l l l l l Measure temperature
Measure temperature 4/ rise on this face

rise on this face

7 A 7
// Perfect insulator/é Constant temperature
/////////////////////// %
(a) (b)
Constant temperature Constant temperature  Measure temperature
Measure temperature _— chgnge at a suitable
// rise on this face P point in block
7/// IR
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%///////////////////// % P ure
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Figure 56. Possible boundary conditions for transient plane source methods for determination of
thermal conductivity or thermal diffusivity [107].
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Figure 57. Experimental arrangement suggested by Vernotte [108,107].

Vernotte did not report having made any experimental measurements. When Clarke and Kingston
[107,109] implemented the method suggested by Vernotte, they found that, for tests on good
insulators, the assumption that half of the heat input flows toward the interface where temperatures
are measured was not satisfied. They added additional slabs of specimen material, as shown in
Figure 58 in order to provide “a further mirror image.” Their heater consisted of a strip of foil
interleaved through the stack as shown in Figure 58. In order to minimize the effects of the heat
generated in the loops on the heater strip, they provided a “guard pile” of specimen material on either
side of the “main pile.” Basically this same technique was later used by several other investigators
[110-113]. Bastian [113] carried out an extensive set of calculations to ascertain the effects of,
among other things, the finite heat capacity of the heaters and thermal contact resistance between the

heaters and the specimens.
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Figure 58. Experimental arrangement used by Clarke and Kingston [107,109].
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For the present project, the use of such a thick stack of specimens is not appropriate since it would
take so long to bring such a thick mass to a uniform temperature that any chemical reactions, such
as loss of water of hydration, would have been completed long before the thermal conductivity test
could even begin.

Before discussing other transient techniques, it is useful to make reference to the thin-heater thermal
conductivity apparatus developed by Hager [114-120]. While this apparatus is normally allowed to
achieve steady-state conditions, the construction of the hot plate is similar to the design that is
proposed for the present project, and the Hager apparatus could be operated in a transient mode.

Figure 59 shows the apparatus used by Harmathy [121] to determine the thermal conductivity of
concrete and other building materials to high temperatures under transient conditions. The
arrangement of the various pieces of specimen material are shown in more clearly in Figure 60. The
entire assembly was wrapped in a 1/2-inch layer of ceramic fiber insulation and placed in a furnace
so as to minimize heat losses. For high-temperature tests, Harmathy used palladium foil as the
heater. Normally, direct current was used to energize this heater. However, Harmathy states:

For materials which are regarded as electrical insulators at room temperature, there
are generally no experimental problems up to about 700°C. Above this temperature
serious difficulties may arise, which are associated partly with a gradual increase in
the electrical conductivity of such materials, and partly with a slow charge build up
on the metal foil and thermocouple wires following the switching on of the foil
heating. This last phenomenon is caused mainly by space-charge polarization,
and is less serious when alternating current is used for foil heating. [emphasis
added]

0 =,/2625«k

a=4/¢
b =80to 100 mm
c=2b

1 = measuring piece

2 = top piece

3 = bottom piece

4 = palladium foil

5 = Inconel clamps

6 = Alumel lead wire for foil heating
7 = thermocouple wires

8 = Fiberfrax cover

9 = over-all Fiberfax wrapping

X = thermocouple junctions

Figure 59. Isometric view of experimental setup used by Harmathy [121].
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Figure 60. Specimen assembly used by Harmathy [121].

Harmathy used step-function heating, i.e., he turned on the heater and let it remain on until the
desired temperature-time history had been recorded. The experiment had to be kept short enough
for his assumption that the specimens were effectively of infinite thickness to be met. His
mathematical analysis required that the power to the heater be constant, which is not really true for
constant-current input to a heater made from a pure metal that has a significant increase in resistance
with increasing temperature. His analysis also did not account for the finite heat capacity of the
heater, or for contact resistance between the heater and the specimen pieces or between the “top
piece” and the “measuring piece.” Other investigators who have used Harmathy’s method include
[122-125]. The experimental setup used by Plummer, et al. [126], to measure the thermal diffusivity
of ceramics to high temperatures was quite similar to that used by Harmathy although these
investigators did not measure the power to the heater and thus could not obtain thermal conductivity.

The most popular method of measuring thermal diffusivity of homogeneous materials is the pulse
method, in which the front side of a specimen is irradiated by a short pulse from a laser or a flash
lamp and the temperature-versus-time history on the back side is recorded. In such tests it is difficult
to measure accurately the energy input by the pulse so that thermal conductivity cannot be obtained
directly. A few investigators have used a thin electrical heater to generate a short pulse of energy
and measured the energy input so that thermal conductivity could be computed. Dzhavadov [127]
used the experimental setup shown in Figure 61, in which three slabs of specimen material, of equal
thickness, were sandwiched between two plates that were maintained at constant temperature. The
heater at the lower interface was energized for a duration of the order of 0.1 s and the resultant
temperature pulse at the upper interface was recorded. From these data the thermal conductivity,
specific heat, and thermal diffusivity were computed.

The experimental technique used by Giedd and Onn [128] more closely resembles the classical pulse

method in that only one slab of specimen material was used. The heater was a thin film of graphite
sprayed onto one side of the specimen. A thermocouple was attached to the back side of the
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specimen. A very short pulse was used. The thermal diffusivity was computed from the half rise-
time on the back surface and the specific heat was computed from the overall temperature rise of the
specimen after it reached thermal equilibrium.

To

A

- - .r.d_ -—-— - e e - - 4— Temperature gage

Y

To
Figure 61. Specimen geometry used by Dzhavadov [127].

In a fairly recent book, Kubic¢ar [129] describes, and references, the rather extensive work that has
been carried out at the Institute of Physics of the Slovak Academy of Science, in Slovakia, using
electrical pulse methods to determine thermal conductivity, specific heat, and thermal diffusivity.
The general experimental approach used at that laboratory is shown in Figure 62. The thermal
properties of the specimen are computed from the energy input to the heater, the maximum
temperature reached, and the time at which that maximum occurred. These investigators generally
used specimens of cylindrical geometry. Kubic¢dr summarizes the procedures that have been
developed to deal with the effects of heat loss from the convex surface of the specimens, the finite
heat capacity of the heater, and thermal contact resistances between the specimen pieces.

Planar source Thermometer
\ Temperature response
Current pulse \ / T
N 1 i - Tm
L PR—i g
Im time
Sample

Figure 62. Experimental layout of the pulse method used by Kubi¢ar and colleagues [129].

Piorkowska and Galeski [130-131] describe a transient technique for determining thermal conduc-
tivity in which the experimental layout is similar to that of a guarded hot plate apparatus. However,
the operational procedure is rather unique. In effect, the “cold plates” are programmed such that
their temperature increases linearly with time. Shortly, depending upon the specimen thickness, after
this programmed ramp is initiated, the teraperature drop across the specimens approaches a quasi-
steady-state value. These investigators carried out two runs on the same specimens, with different
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power inputs to the heater but with the cold plates increasing at the same rate. By subtracting the
measured temperature differences for these two runs, the transient terms cancel out and the thermal
conductivity can be obtained, even though true steady-state conditions are never achieved. The
subtraction of the two temperature-difference histories also eliminates the influence of heat
production or absorption associated with phase transformations. These authors provide extensive
mathematical analysis of their method, including allowing the thermal conductivity of the specimen
to be temperature dependent.

Some of the analysis procedures used for the above transient plane-source techniques are
summarized in Appendix B.
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6. Availability of Apparatus and Testing Services

The NIST Building and Fire Research Laboratory does not have in-house capability for carrying out
the required thermal property measurements over the temperature range of concern (room
temperature to 1200 °C). The NIST Ceramics Division, in the Materials Science and Engineering
Laboratory (MSEL), has the capability to carry out measurements of specific heat, heats of reaction,
and thermal expansion to temperatures higher than 1200 °C. However, their equipment uses rather
small samples. The DTA or DSC measurements would be made on powdered samples of the order
of a gram or so. The dilatometer uses a specimen nominally 5 mm in diameter by 25 mm long. The
Ceramics Division has no capability to measure thermal conductivity or thermal diffusivity above
room temperature. The NIST Metallurgy Division, in MSEL, can measure thermal diffusivity of
small specimens only at temperatures above 900 °C.

In order to locate laboratories, outside of NIST, that could provide some or all of the needed
measurements the following request was faxed to vendors of thermal property measurement
equipment:

The NIST Building and Fire Research Laboratory is working on a project concerning
the response of concrete to fire conditions. My responsibilities include determining
what thermal property measurements need to be made and locating laboratories
where these measurements can be done reliably.

The materials of interest are normal-strength and high-strength Portland cement
concrete, with quartz sand as the fine aggregate and (nominally) 1/2-inch limestone
as the coarse aggregate. We are primarily interested in the effective overall thermal
properties of the mixture of cement paste, fine aggregate, and coarse aggregate. Thus
for properties, such as thermal conductivity and thermal expansion, that depend upon
the sizes and deployment of the various phases, the test samples need to be large
compared to the size of the coarse aggregate. For properties such as heat capacity,
heats of reaction, and mass loss, that only depend upon the mass fraction of the
various components, either the test samples need to be large compared to the
aggregate size or else it would be necessary to grind and blend rather large pieces of
concrete and then take smaller representative samples from the resultant powder.
Ideally, we would like to obtain data from room temperature to 1200 C but are
interested in laboratories that could obtain data to temperatures above 800 C.

We have not yet determined how many tests will be required for each type of
measurement. However, there will be at least four types of concrete and it probably
will be appropriate to make measurements at several heating rates. Thus we
anticipate that approximately 10 to 12 tests for each property will be required. The
thermal properties of interest include:

Heat capacity and heats of reaction (probably DSC measurements)

Mass loss versus temperature (TGA)
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Thermal expansion

Thermal conductivity (direct measurements, not from thermal diffusivity)

Thermal diffusivity (?)
At this time, NIST does not wish to buy the instruments to carry out such
measurements, but prefers to contract to have the measurements made elsewhere. If
you only sell thermal measurement instrumentation and do not provide testing
services, please let me know of laboratories that can provide such measurement
services, either using your instrumentation or other types of equipment. It also would
be helpful if you could indicate which models of your instrumentation would be most
appropriate for which types of measurement.
If you do provide testing services, please let me know what types of measurements
you can provide, along with the temperature range, estimated accuracy, and required
sample size and geometry for each type of measurement. Also, please provide an
estimate of the costs of such measurements.

A similar request was faxed to numerous laboratories, but with the next-to-last paragraph omitted.

As of the date of this report, the following vendors and laboratories have been contacted (for foreign
vendors, the city of their U.S. subsidiary is given):

Anter Corporation (Pittsburgh, PA)

Ball Aerospace Systems (Boulder, CO)

Cahn Instruments (Madison, WI}

Colorado School of Mines (Golden, CO)

Concurrent Technologies Corporation (Johnstown, PA)
Coors Analytical Company (Golden, CO)

duPont Fibers Analytical Services (Wilmington, DE)
Geoscience Ltd. (San Diego, CA)

Hauser Laboratories (Boulder, CO)

Harrop Industries, Inc. (Columbus, OH)

Hazen Research, Inc. (Golden, CO)
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Holometrix, Inc. (Bedford, MA)

Industrial Science & Technology Network, Inc. (York, PA)
Iowa State University (Ames, IA)

Itertek Testing Services (Richardson, TX)

Leach & Gamer Technology (North Attleboro, MA)
Linseis Inc. (Princeton Junction, NJ)

Arthur D. Little, Inc. (Cambridge, MA)

Lockheed Martin (Orlando, FL)

Louisiana Productivity Center (Lafayette, LLA)

The M&P Lab (Schenectady, NY)

Massachusetts Materials Research (Boylston, MA)
MATECH Associates (Scranton, PA)

Materials Research & Engineering, Inc. (Boulder, CO)
Mettler Toledo Inc. (Hightstown, NJ)

National Physical Laboratory (Teddington, Middlesex, United Kingdom)
Netzsch Instruments, Inc. (Paoli, PA)

Northrop (Rolling Meadows, IL)

Oak Ridge National Laboratory (Oak Ridge, TN)

Orton Ceramic Foundation (Westerville, OH)

Owens Corning Fiberglas Corporation (Granville, OH)
Polymer Solutions Inc. (Blacksburg, VA)

Precision Measurements and Instruments Corporation (Philomath, OR)

Research Triangle Institute (Research Triangle Park, NC)
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SETARAM (Grand Prairie, TX)

Shimadzu (Columbia, MD)

Showa Denko America (New York, NY)

TA Instruments (New Castle, DE)

Texas Research Institute (Austin, TX)

Tg Technologies, Inc. (Freehold, NJ)

Theta Industries (Port Washington, NY)

TPRL, Inc. (West Lafayette, IN)

Tulane University (New Orleans, LA)

Ulvac Technologies, Inc. (Methuen, MA)

University of Illinois (Champaign, TL)
As replies from these organizations have come in, there have been numerous suggestions of other
laboratories that might be able to carry out some of the measurements. Thus, it is anticipated that
there will be further additions to the above list.
While it is too early to select particular laboratories to carry out the needed measurements, it is clear
that there will be multiple Jaboratories with the capability to measure specific heat, heats of reaction,
mass loss, and thermal expansion. A few laboratories can measure thermal conductivity (cut-bar
method) or thermal diffusivity (flash method) on specimens that are too small to be representative
of concrete. Thus far, only one laboratory has indicated that they can measure thermal conductivity

using a guarded hot plate apparatus. As discussed earlier in this report, a guarded hot plate apparatus
is too slow to allow measurements to be made before chemical reactions go to completion.
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7. Design of New Apparatus for High-Temperature
Thermal Conductivity Measurements

The cross section of the proposed test setup is shown in Figure 63 — it consists of a thin-foil heater
sandwiched between two similar specimens, which are in turn sandwiched between two “cold
plates.” The specimens will be nominally 200 mm square with thicknesses in the range of 10 to
perhaps 50 mm. The cold plates will simply be square, thin sheets of corrosion-resistance metal,
such as nichrome or inconel; further analysis may indicate that it would be desirable to provide a
guard gap in these cold plates in order to reduce lateral heat flow. NIST has purchased a high-
temperature furnace for this project - the outside surfaces of the two cold plates will be exposed to
the air in the furnace. The edges of the stack, shown in Figure 63, will be insulated with ceramic
fiber insulation. _

An expanded view of the thin-foil heater is shown in Figure 64 (not to scale). The heater will consist
of a sheet of 0.025 mm platinum foil, folded to make a long, thin U. The interior of the U will be
filled by a sheet of ceramic paper, with slots cut into it to accept potential leads to measure the
voltage drop across the central portion of the heater. The two arms of the U will be attached to nickel
busbars to provide the electrical current for the heater. The platinum heater will also act as a
resistance thermometer to read its own temperature. In addition, the space within the U will be
provided with Type N thermocouples to provide an independent check on the heater temperature.
Several Type N thermocouples will also be attached to each of the two cold plates to provide their
temperature.

The type of heaters used, e.g., by Harmathy [121] and by Plummer, et al., are not folded back on
themselves as is proposed here. Rather, the current leads for those heaters are at opposite ends of
a flat strip heater. That design would be satisfactory if the heater were to be heated by direct current.
However, it is proposed that the heater for the NIST apparatus be powered by alternating current,
both to minimize the space-charge effects which Harmathy encountered (see the quotation on p.82
of this report) and to enable the use of an integrating digital voltmeter, with excellent ac common
mode rejection, to read thermocouple voltages without serious errors due to leakage currents from
the heater. With a single-pass heater, such as those used by Harmathy and by Plummer, there would
be large inductances in the current loop and in the potential tap loop; such inductances could cause
serious measurement errors unless very sophisticated equipment were used to measure the relative
phases of the current and voltage signals. The folded heater design that is proposed will have
minimal inductance so that the power to the heater is simply the product of the root-mean-square
voltage drop across the central portion of the heater times the root-mean-square current through the
heater, and the resistance of the heater will be simply the quotient of these two quantities.

Figure 65 shows how the thin-foil heater will be supported. To the right of these drawing can be
seen two pieces of nickel angle stock that act as legs to support the right-hand-side of the twin
busbars. At the left end of the busbars, they are electrically separated from each other by a thin
ceramic washer through which a ceramic pin is inserted to provide a means of supporting that end
of the busbars.
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Figure 63. Cross section of proposed apparatus for high-temperature thermal conductivity
measurements.
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Figure 64. Cross section of the thin foil heater.
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Figure 65. Elevation view of the foil heater showing the support structure that also serves as current
leads. The free end of the busbar is supported from the support frame shown in the next figure.
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Figure 66 is a conceptual view of the (nichrome or inconel) support frame from which the foil heater,
specimens, and cold plates are suspended. The upper drawing is a plan view showing support rails,
at each side, from which the components of the specimen assembly are hung. These support rails
are held up by four legs, made of angle stock, as shown in the lower elevation view. Halfway up the
rear legs a load screw plate is attached. The other load screw is supported from an angled arm
attached to a fulcrum. The arrangement for the load screws can better be seen in Figure 67, which
shows how a compressive load is applied to the specimen stack (for clarity, the support frame has
been omitted in this drawing). Figure 67 represents the case where the weight that provides the
compressive load is located inside the furnace. If possible, it would be preferable not too have the
weight inside the furnace since it takes up a lot of space, provides a large thermal load for the
furnace, and makes it difficult to change the applied force. A far preferable arrangement would be
as shown in Figure 68, where the loading force is provided by a weight below the furnace, thus
permitting the placement of two identical apparatus inside the furnace. The furnace that has been
ordered by NIST is a bottom loading furnace and it may not be practical to have the weights located
below the furnace. Figure 69 shows an arrangement whereby the weights can be located above the
furnace with a pulley and cable (not shown) to reverse the direction of the force provided by each
weight.

The intent is to run the tests in a manner analogous to that used by Piorkowska and Galeski [130-
131], as described above on pp. 84-85. Since the changes to the specimens due to chemical reactions
will be irreversible, it will not be possible to run tests on the same specimens at two different power
levels. Rather, it is planned to run two tests simultaneously on two similar pairs of specimens, one
test at a low power (just enough to enable obtaining accurate data for the heater resistance) and one
test at a power large enough to cause a temperature drop of, say, 20 to 40 K across the specimens.
The calculation procedure used by Piorkowska and Galeski is summarized in Appendix B.

With this apparatus, it also would be possible to carry out runs using Harmathy’s method, which is
described briefly on pp. 82-83, using his calculation procedure, which is summarized in Appendix B.
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Figure 66. The support frame from which the foil heater, specimens, and cold plates are suspended.
The fulcrum position would vary depending upon how the loading force is applied.

95



Test Assembly

[ Fulcrum

9 ~
7 AN =

% \
4 / \ N
7 SAND

AN

=1

I A~ (R Weight

0
Iy
U

Load //// \\\\ Load
Screw ////\\\\ Screw

Furnace Wall

Figure 67. Elevation view of the apparatus if the loading force is provided by a weight inside the
furnace.

96



Furnace Wall

i Test Assembly 0
7, O F// =
L VS BN r 'S BN A
Ve T N v T N

\\
O\
v
S
/1
\\
WO\
N AN
e
oy
//

’, O ’, QO
) ~\J Load AN
\ s N
A Screw 772 \\N
7 AN s S ANN
2 IR IR
/LN 7
/, QO i // O
' QS ~ V2 BN N
OANONORHA 2 \\\ ﬂ“‘]ﬂ“ﬂﬂﬂﬂu HHCHTONI, e NN CANDLA
s SANN
R RN
N
’, N
%
/ /]

N
v
Ve /
///

N
7

N
2

AN

AN N
\\
/

7/ //

Fulcrum

Figure 68. Elevation view of the apparatus if the loading force is provided by a weight below the
furnace. ‘

97




Fulcrum

T,

Test Assembly N
AN /

" N

v £ N / 2N N

[ 7/ AN L " A
7/ N AN / AN ~
/ // \\ N / // \\ AN
7/ AN s/ AN
A\ Load AN\

/ ] N / > N
s N L 7 N
Ve /N AN SCTCW / /1 AN

// \\ // \\

[Ty A LA

N \\
/
Ve //
\\\\\
\\
N
///
/ //

|
I][Iﬂl]ﬂl]l]l]lllﬂib

AN
NN
N

v
“y S

/I
\
~N
N

4
/
/

/I

N
/
AN
//

N
/

~N
/
Vs /s
///

N
//

N
N
7/

,
ra

AN
Z

Furnace Wall

Figure 69. Elevation view of the apparatus if the Joading force is provided by a weight and pulley
system above the furnace.

98




[1]

[2]

(3]

[3]

(6]

(8]

(9]

[10]

[11]
(12]

(13]
(14]

[15]

[16]

(17]

[18]

8. References
H. B. Callen, “The application of Onsager’s reciprocal relations to thermoelectric,
thermomagnetic, and galvanomagnetic effects,” Phys. Rev. 73, 1349-58 (1948).

C. A. Domenicali, “Irreversible thermodynamics of thermoelectric effects of homogeneous,
anisotropic media,” Phys. Rev. 92, 877-81 (1953).

C. A. Domenicali, “Irreversible thermodynamics of thermoelectricity,” Rev. Mod. Phys. 26,
237-75 (1954).

C. A. Domenicali, “Stationary temperature distribution in an electrically heated conductor,”
J. Appl. Phys. 25, 1310-1 (1954).

J. W. Leech, “Irreversible thermodynamics and kinetic theory in the derivation of
thermoelectric relations, Canad. J. Phys. 37, 1044-54 (1959).

S. R. de Groot, "On the thermodynamics of irreversible heat and mass transfer,” Intl. J. Heat
Mass Transfer 4, 63-70 (1961).

S. R. de Groot and P. Mazur, Thermodynamics of Irreversible Processes, (North-Holland,
Amsterdam, 1962).; reprinted by Dover Publications in 1984.

L Prigogine, Introduction to Theory of Irreversible Processes (Interscience Publishers, New
York, 1967).

R. Haase, Thermodynamics of Irreversible Processes (Addison-Wesley, Reading, MA,
1969); corrected, slightly enlarged edition reprinted by Dover Publications in 1990.

L. Gyarmati, Non-equilibrium Thermodynamics - Field Theory and Variational Principles
(Springer-Verlag, New York, 1970).

B. H. Lavenda, Thermodynamics of Irreversible Processes (Wiley, New York, 1978).

K. S. Forland, T. Forland, and S. K. Ratkje, Irreversible Thermodynamics: Theory and
Applications (Wiley, Chichester, 1988).

B. C. Eu, Kinetic Theory and Irreversible Thermodynamics (Wiley, New York, 1992).

K. Gambar and F. Markus, “On the global symmetry of thermodynamics and Onsager’s
reciprocity relations,” J. Non-Equilib. Thermodyn. 18, 51-7 (1993).

G. D. C. Kuiken, Thermodynamics of Irreversible Processes. Applications to Diffusion and
Rheology (Wiley, Chichester, 1994).

D. Jou, J. Casas-Viasquez, and G. Lebon, Extended Irreversible Thermodynamics, 2" Fd.
(Springer, New York, 1996).

D. Jou, J. Casas-Vasquez, and G. Lebon, “Recent bibliography on extended irreversible
thermodynamics and related topics (1992-95),” J. Non-Equilib. Thermodyn. 21, 103-121
(1996).

D. A. de Vries, “Simultaneous transfer of heat and moisture in porous media,” Trans. Am.
Geophys. Union 39, 909-16 (1958).

99




(19]

[20]

(21}

[22]

[23]

[24]

[25]

[26]

[27]

[28]

(29]

(30]

[31]
[32]

D. A. de Vries, "The theory of heat and moisture transfer in porous media revisited,” Intl. J.
Heat Mass Transfer 30 (7), 1343-50 (1987).

J.R. Philip and D. A. de Vries, “Moisture movement in porous materials under temperature
gradients,”Trans. Am. Geophys. Union 38, 222-32, 594 (1957).

M. Fortes and M. R. Okos, "A nonequilibrium thermodynamics approach to transport
phenomena in capillary-porous media," in Proc. Ist Intl. Symp. on Drying (McGill Univ.,
Montreal, 1978).

M. Fortes and M. R. Okos, "Heat and mass transfer in hydroscopic capillary extruded
products,” AIChE Journal 27, 255-62 (1981).

A. V. Luikov, Heat and Mass Transfer in Capillary-porous bodies (Pergamon, Oxford,
1966).

A.V.Luikov, "Systems of differential equations of heat and mass transfer in capillary-porous
bodies,"” Intl. J. Heat Mass Transfer 18, 1-14 (1975).

N. G. Zoldners, Thermal Properties of Concrete under Sustained Elevated Temperatures, pp.
1-31 in Temperature and Concrete, Symposium on Effect of Temperature on Concrete, ACI
Publication SP 25 (American Concrete Institute, 1968).

P. J. Sullivan and M. P. Poucher, The Influence of Temperature on the Physical Properties
of Concrete and Mortar in the Range 20 C to 400 C, pp. 103-135 in Temperature and
Concrete, Symposium on Effect of Temperature on Concrete, ACI Publication SP 25
(American Concrete Institute, 1968).

T.Z. Harmathy, “Thermal properties of concrete at elevated temperatures,” J. Matls. §,47-74
(1970).

T. Harada, J. Takeda, S. Yamane, and F. Furumura, Strength, Elasticity, and Thermal
Properties of Concrete Subjected to Elevated Temperatures, pp. 377-406 in Concrete for
Nuclear Reactors, Vol. II, ACI Special Publication SP-34 (American Concrete Institute,
1972).

J. C. Marechal, Thermal Conductivity and Thermal Expansion Coefficients of Concrete as
a Function of Temperature and Humidity, pp. 1047-57 in Concrete for Nuclear Reactors,
Vol. 11, ACI Special Publication SP-34 (American Concrete Institute, 1972).

T. Z. Harmathy and L. W. Allen, “Thermal properties of selected masonry unit concretes,”
Amer. Concrete Inst. J. 70, 132-42 (1973).

A. M. Neville, Properties of Concrete (John Wiley and Sons, New York, 1973).

Y. Anderberg, S. E. Magnusson, O. Pettersson, S. Thelandersson, and U. Wickstrom, An
Analytical Approach to Fire Engineering Design of Concrete Structures, pp. 409-38 in
Analytical Design of Fire Exposed Concrete Structures (Lund Institute of Technology, Lund,
Sweden, 1978).

100




[33]

(34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

J. A. Rhodes, Thermal Properties, Chapt. 17 in Significance of Tests and Properties of
Concrete and Concrete-Making Materials, ASTM Special Technical Publication 169B
(American Society for Testing and Materials, Philadelphia, 1978).

C.R. Cruz and M. Gillen, “Thermal expansion of portland cement paste, mortar and concrete
at high temperatures,” Fire and Matls. 4, 66-70 (1980).

U. Schneider, Behavior of Concrete at High Temperatures, Deutscher Ausschuss fiir
Stahlbeton, Heft 337 (Verlag W. Ernst und sohn, Berlin, 1982).

H. C. Hirth, Jr., M. Polivka, and D. Pirtz, Final Report on Thermal Properties of Concrete
at High Temperatures, Rept. No. ORNL/BRP-81/1 (Rev. 1) (Oak Ridge Natl. Lab., Oak
Ridge, TN, 1984).

U. Schneider (Ed.), Properties of Materials at High Temperatures — Concrete, for RILEM
Committee 44-PHT (Dept. Civil Eng., Kassel Univ., 1985).

U. Schneider, “Concrete at high temperatures — a general review,” Fire Safety J. 13, 55-69
( 1988).

R. Valore, Jr., A. Tuluca, and A. Caputo, Assessment of the Thermal and Physical Properties
of Masonry Block Products, Rept. No. ORNL/Sub/86-22020/1 (Oak Ridge National
Laboratory Oak Ridge, TN, 1988).

P. Morabito, “Measurement of the thermal properties of different concretes,” High
Temperatures — High Pressures 21, 51-59 (1989).

T. Z. Harmathy, Fire Safety Design & Concrete (Longman Scientific & Technical, Essex,
England, 1993).

J. M. Scanlon and J. E. McDonald, Thermal Properties, pp. 229-239 in Significance of Tests
and Properties of Concrete and Concrete-Making Materials, ASTM Special Technical
Publication 169C , P. Klieger and J. F. Lamond, Eds. (American Society for Testing and
Materials, Philadelphia, 1994).

P. Smith, Resistance to Fire and High Temperatures, pp. 282-295 in Significance of Tests
and Properties of Concrete and Concrete-Making Materials, ASTM Special Technical
Publication 169C , P. Klieger and J. F. Lamond, Eds. (American Society for Testing and
Materials, Philadelphia, 1994).

T.T.Lie and V. K. R. Kodur, “Thermal and mechanical properties of steel-fibre-reinforced
concrete at elevated temperatures,” Canad. J. Civil Eng. 23, 511-517 (1996).

Z.P. Bazant and M. F. Kaplan, Concrete at High Temperatures: Material Properties and
Mathematical Models (Longman (Addison-Wesley), London, 1996).

M. Saad, S. A. Abo-El-Enein, G. B. Hanna, and M. F. Kotkata, “Effect of temperature on
physical and mechanical properties of concrete containing silica fume,” Cement & Concrete
Res. 26, 669-675 (1996).

101



[47]

[48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

M. G. Van Geem, J. Gajda, and K. Dombrowski, Thermal Properties of Commercially
Available High-Strength Concretes, PCA R&D Serial No. 2031 (Portland Cement Assoc.,
Skokie, IL, 1996).

M. G. Van Geem, J. Gajda, and K. Dombrowski, “Thermal properties of commercially
available high-strength concretes,” Cement, Concrete, & Aggregates 19, 38-53 (1997).

F. Vodik, R. Cerny, J. Drchalova, §. Hogkov4, O. Kapickova, O. Michalko, P. Semerak, and
J. Toman, “Thermophysical properties of concrete for nuclear-safety related structures,
Cement & Concrete Res. 27, 415-426 (1997).

X. Fuand D. D. L. Chung. “Effects of silica fume, latex, methylcellulose, and carbon fibers
on the thermal conductivity and specific heat of cement paste,” Cement & Concrete Res. 27,
1799-1804 (1997).

Y. S. Touloukian, W. R. Judd, and R. F. Roy (Eds.), Physical Properties of Rocks and
Minerals, CINDAS Data Series on Material Properties, Vol. II-2 (Hemisphere Publishing,
New York, 1989).

W. L. Sibbitt, J. G. Dodson, and J. W. Tester, Thermal Conductivity of Rocks Associated
with Energy Extraction from Hot Dry Rock Geothermal Systems, p. 399 in Thermal
Conductivity 15, Proc. 15" Intl. Conf. on Thermal Conductivity, V. V. Mirkovich, Ed.
(Plenum, New York, 1978).

W. L. Sibbitt, J. G. Dodson, and J. W. Tester, “Thermal conductivity of crystalline rocks
associated with energy extraction from hot dry rock geothermal systems,,” J. Geophys. Res.
84, 1117-1124 (1979).

M. T. Morgan and G. A. West, Thermal Conductivity of the Rocks in the Bureau of Mines
Standards Rock Suite, Rept. No. ORNL/TM-7052 (Oak Ridge Natl. Lab., Oak Ridge, TN,
1980).

M. T. Morgan and G. A. West, The Thermal Conductivity of the Rocks in the Bureau of
Mines Standards Rock Suite, pp. 79-90 in Thermal Conductivity 16, Proc. 16" Intl. Conf. on
Thermal Conductivity, D. C. Larsen, Ed. (Plenum, New York, 1983).

F.E. Heuze, “High-temperature mechanical, physical and thermal properties of granitic rocks
— areview,” Intl. J. Rock Mech. Min. Sci. & Geomech. Abstr. 20, 3-10 (1983).

W. B. Durham, V. V. Mirkovich, and H. C. Heard, “Thermal diffusivity of igneous rocks at
elevated pressure and temperature,” J. Geophys. Res. 92, 11615-11634 (1987).

W. H. Somerton, Thermal Properties and Temperature-Related Behavior of Rock/Fluid
Systems (Elsevier, Amsterdam, 1992).

A. Bouguerra, J. P. Laurent, M. S. Goual, and M. Queneudec, “The measurement of the
thermal conductivity of solid aggregates using the transient plane source technique,” J. Phys.
D: Appl. Phys. 30, 2900-2904 (1997).

N. E. Thompson, “A note of the difficulties of measuring the thermal conductivity of
concrete,” Mag. Concrete Res. 20, 45-49 (1968).

102



[61]

{62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

(71]

[72]

(73]

[74]

[75]

[76]

(77

D. A. G. Bruggeman, “Uber die Geltungsbereiche und die Konstaantenwerte der
verscheidenen Mischkérperformeln Lichteneckers,” Physikalische Zeit. 37, 906-XXXX,
Chapt. 5 (1936).

R. L. Hamilton and O. K.Crosser, “Thermal conductivity of heterogeneous two-component
systems,” Ind. Eng. Chem. Fundamentals 1, 187-91 (1962).

P.S. Turner, “Thermal-expansion stresses in reinforced plastics,” J. Research Natl. Bur. Stds.
37, 239-50 (1946). RP1745

E. H. Kerner, “The elastic and thermo-elastic properties of composite media,” Proc. Phys.
Soc. 69, 808-13 (1956).

V. M. Levin, “On the coefficients of thermal expansion of heterogeneous materials,” Mech.
Solids 2, 58-61 (1967).

R. A. Schapery, “Thermal expansion coefficients of composite materials based on energy
principles,” J. Composite Matls. 2, 380-404 (1968).

B. W. Rosen and Z. Hashin, “Effective thermal expansion coefficients and specific heats of
composite materials,” Intl. J. Eng. Sci. 8, 157-173 (1970).

A. A.Fahmy and A. N. Ragai, “Thermal-expansion behavior of two-phase solids,” J. Appl.
Phys. 41, 5108-11 (1970).

A. E. Powers, Conductivity in Aggregates, KAPL-2145, Knolls Atomic Power Laboratory
(March 1961).

R. E. Meredith and C. W. Tobias, “Conduction in heterogeneous systems,” in Advances in
Electrochemistry and Electrochemical Engineering, C. W. Tobias, Ed. (Wiley, New York,
1962).

H.W.Godbee and W. T. Ziegler, “Thermal conductivities of MgO, Al,O,, and ZrO, powders
to 850 °. II. Theoretical,” J. Appl. Phys. 37, 56-65 (1966).

D.R. Flynn, “Thermal conductivity of ceramics,” in Mechanical and Thermal Properties of
Ceramics, NBS Spec. Pub. 303 (National Bureau of Standards, Gaithersburg MD, 1969).

S. C. Cheng and R. 1. Vachon, “A technique for predicting the thermal conductivity of
suspensions, emulsions and porous materials,” Intl. J. Heat Mass Transfer 13, 537- (1970).

R. C. Progelhof, J. L. Throne and R. R. Ruetsch, “Methods for predicting the thermal
conductivity of composite systems: a review,” Polym. Eng. Sci. 16, 615- (1976).

D. K. Hale, “Review: The physical properties of composite materials,” J. Mater. Sci. 11,
2105- (1976).

R. Landauer, “Electrical conductivity in inhomogeneous media,” in Electrical Transport and
Optical Properties of Inhomogeneous Media, J. C. Garland and D. B. Tanner, Eds.
(American Institute of Physics, New York, 1978).

J. L. Jackson and S. R. Coriell, “Transport coefficients of composite materials,” J. Appl.
Phys. 39, 2349-54 (1968).

103




[78]

[79]

(80]

[81]

[84]
[85]

[86]

(87]

(88)
(89]

(90]
[91]

[92]

J. Valentich, Tube Type Dilatometers (Instrument Society of America, Research Triangle
Park, NC, 1981).

G. Ruffino, Thermal Expansion Measurement by Interferometry, pp. 689-706 in
Compendium of Thermophysical Property Measurement Methods, Vol. 1 Survey of
Measurement Techniques , K.D. Magli¢, A. Cezairliyan, and V.E. Peletsky, eds. (Plenum
Press, New York, 1984).

R K. Kirby, Methods of Measuring Thermal Expansion, pp. 549-567 in Compendium of
Thermophysical Property Measurement Methods, Vol. 2 Recommended Measurement
Techniques and Practices, K.D. Magli¢, A. Cezairliyan, and V.E. Peletsky, eds. (Plenum
Press, New York, 1992).

om0

G. Ruffino, Recent Thermal Expansion Interferometric Measuring Instruments, pp. 569-599
in Compendium of Thermophysical Property Measurement Methods, Vol. 2 Recommended
Measurement Techniques and Practices, K.D. Magli¢, A. Cezairliyan, and V.E. Peletsky,
eds. (Plenum Press, New York, 1992).

R. E. Taylor et al., Thermal Expansion of Solids (ASM International, Materials Park, OH,
1998).

J. P. McCullough and D.W. Scott, eds., Experimental Thermodynamics. Volume I
Calorimetry of Non-reacting Systems (Plenum Press, New York, 1968).

A. Cezairliyan, et al., Specific Heat of Solids (Hemisphere, New York, 1988).

W. Hemminger, Calorimetry: Fundamentals and Practice (Verlag Chemie, Weinheim,
1984).

K.D. Magli¢, A. Cezairliyan, and V.E. Peletsky, eds., Compendium of Thermophysical
Property Measurement Methods, Vol. 1 Survey of Measurement Techniques (Plenum Press,
New York, 1984).

K.D. Magli¢, A. Cezairliyan, and V.E. Peletsky, eds., Compendium of Thermophysical
Property Measurement Methods, Vol. 2 Recommended Measurement Techniques and
Practices (Plenum Press, New York, 1992).

W.W. Wendlandt, Thermal Analysis (Wiley, New York, 1986).

M. E. Brown, Introduction to Thermal Analysis: Techniques and Applications (Chapman and
Hall, New York, 1988).

R.F. Speyer, Thermal Analysis of Materials (Marcel Dekker, New York, 1994).

M. J. Richardson, Application of Differential Scanning Calorimetry to the Measurement of
Specific Heat, pp. 669-685 in Compendium of Thermophysical Property Measurement
Methods, Vol. 1 Survey of Measurement Techniques , K.D. Magli¢, A. Cezairliyan, and V.E.
Peletsky, eds. (Plenum Press, New York, 1984).

M. J. Richardson, Application of Differential Scanning Calorimetry to the Measurement of
Specific Heat, Compendium of Thermophysical Property Measurement Methods, Vol. 2

104




[93]

[94]
[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Recommended Measurement Techniques and Practices, K.D. Magli¢, A. Cezairliyan, and
V_.E. Peletsky, eds. (Plenum Press, New York, 1992).

S.C. Mraw, Differential Scanning Calorimetry, pp. 395-435 in, Specific Heat of Solids, A.
Cezairliyan, ed. (Hemisphere, New York, 1988).

R. P. Tye, ed., Thermal Conductivity, Vols I and 2 (Academic Press, New York, 1969).

A.W. Pratt, Heat Transmission in Low Conductivity Materials, pp. 301-405 in Thermal
Conductivity, Vol. 1, R.P. Tye, ed. (Academic Press, New York, 1969).

G.C. Danielson and P.H. Sidles, Thermal Diffusivity and Other Non-steady-state Methods,
pp. 149-201 in Thermal Conductivity, Vol. 2, R.P. Tye, ed. (Academic Press, New York,
1969).

W.R. Davis, Hot-Wire Method for the Measurement of the Thermal Conductivity of
Refractory Materials, pp. 231-254 in Compendium of Thermophysical Property Measurement
Methods, Vol. 1 Survey of Measurement Techniques, K.D. Magli¢, A. Cezairliyan, and V.E.
Peletsky, eds. (Plenum Press, New York, 1984).

A.E. Wechsler, The Probe Method for Measurement of Thermal Conductivity," pp. 161-185
in Compendium of Thermophysical Property Measurement Methods, Vol. 2 Recommended
Measurement Techniques and Practices, K.D. Magli¢, A. Cezairliyan, and V.E. Peletsky,
eds. (Plenum Press, New York, 1992).

D.R. Flynn, Development of a Measurement System for Field Determination of Thermal
Properties of Soils and Rock: 1. Bibliography and Abstracts, DRF R&D Report No. 97-02-
101, April 1997, 110 p.

R.R. Dils, J.D. Allen, J.C. Richmond, and M.B. McNeil, Hot Wire Thermal Conductivity
Measurements in High Temperature Refractories, U.S. Department of Energy Rept. No.
DOE/CS/40442-T1, 1982.

S.E. Gustafsson, E. Karawacki, and M.N. Khan, “Transient hot-strip method for
simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids,”
J. Phys. D: Appl. Phys. 12, 1411-1421 (1979).

S.E. Gustafsson and E. Karawacki, “Determination of the thermal-conductivity tensor and
the heat capacity of insulating solids with the transient hot-strip method,” J. Appl. Phys. 52,
2596-2600 (1981).

S.E. Gustafsson, K. Ahmed, A.J. Hamdani, and A. Magsood, “Transient hot-strip method
for measuring thermal conductivity and specific heat of solids and fluids: second order theory
and approximations for short times,” J. Appl. Phys. §3, 6064-6068 (1982).

U. Brydsten and G. Bickstrom, “Hot strip determination of the thermal conductivity tensor
and heat capacity of crystals,” Int. J. Thermophysics 4, 369-387 (1983).

S.E. Gustafsson, “Transient plane source techniques for thermal conductivity and thermal
diffusivity measurements of solid materials,” Rev. Sci. Instrum. 62, 797-804 (1991).

105




[106]

[107]

[108]

[109]

[110]

(111

[112]

[113]

[114]

[115])

[116]

[117]

[118]

[119]

S.E. Gustafsson, B. Suleiman, N.S. Saxena, and 1. ul Haq, “The transient plane source
technique: experimental design criteria,” High Temperatures — High Pressures 23, 289-293
(1991).

L.N. Clarke and R.S.T. Kingston, “Equipment for the simultaneous determination of thermal
conductivity and diffusivity of insulating materials using a variable-state method,” Australian
J. Appl. Sci. 1, 172-187 (1950).

P. Vernotte, “Détermination simultanée de la chaleur spécifique et de la conductiblité
thermique des isolants. Method du signal,” Comptes Rendus de L’ Académie des Sciences
204, 563-565 (1937).

L.N. Clarke and R.S.T. Kingston, “Further investigation of some errors in a dynamic method
for the determination of thermal conductivity and diffusivity of insulating materials,”
Australian J. Appl. Sci. 2, 235-242 (1951).

O. Krischer, “Uber die Bestimmung der Wirmeleitfahigkeit, der Wirmekapazitit und der
Wiirmeeindringzahl in einem Kurzzeitverfahren,” Chemie-Ing.-Techn. 26, 42-44 (1954).

A.W. Pratt and J.M.E. Ball, “Thermal conductivity of building materials,” J. Inst. Heating
Ventilating Engrs. 24, 201-226 (1956).

A.P. Hatton, “Thermal conductivity and diffusivity measurements by an unsteady-state
method with application to insulating materials containing moisture and ice,” J. Mech.
Engng. Sci. 2, 45-51 (1960).

G. Bastian, “Détermination de caractéristiques thermophysiques de matériaux de
construction par la méthode de la source plane en régimes transitoire et asymtotique,” Revue
Phys. Appl. 22, 431-444 (1987).

N.E. Hager, Jr., “Miniature thin-heater thermal conductivity apparatus,” ISA Trans. 8, 104-
109 (1969).

N.E. Hager, Jr., “Thin-heater thermal conductivity apparatus,” Rev. Sci. Instrum. 31, 177-
185 (1960).

N.E. Hager, Jr., “Thin-heater thermal conductivity apparatus,” J. Therm. Insul. 9, 140-159
(1985).

N.E. Hager, Jr., “Recent developments with the thin-heater thermal conductivity apparatus,”
J. Therm. Insul. 9, 111-122 (1985).

C.F. Gilbo, “Thermal conductivity measurement using a thin-heater apparatus,” J. Therm.
Insul. 9, 92-101 (1985).

G. Sirdeshpande, Thin-heater Thermal Conductivity Apparatus for Measuring Thermal
Conductivity of Powdered Insulations, pp. 844-855 in Thermal Conductivity 22. Proc.
Twenty-Second Intl. Conf. On Thermal Conductivity, T.W. Tong, ed. (Technomic Publishing,
Lancaster, PA, 1994),

106




[120]

{121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

ASTM C1114-95, Standard Test Method for Steady-State Thermal Transmission Properties
by Means of the Thin-Heater Apparatus (Amer. Soc. For Testing and Materials, West
Conshohocken, PA, 1995).

T.Z. Harmathy, “Variable-state methods of measuring the thermal properties of solids,” J.
Appl. Phys. 35, 1190-1200 (1964).

R.C. Steere, “Thermal properties of thin-film polymers by transient heating,” J. Appl. Phys.
37, 3338-3344 (1966).

A B. Ng, M.S. Mirza, and T.T. Lie, “Response of direct models of reinforced concrete
columns subjected to fire,” ACI Structural J. 87, 313-325 (1990).

P.A. Miles and S.J. Grubits, Measurement of the Thermal Diffusivity of Masonry. Review
of Test Methods, Report CIB W 14/80/40, Experimental Building Station, North Ryde, New
South Wales, Australia, 1980, 29 pp.

N.H. Schilmoeller and D. White, Transient System for Measurement of Thermal Properties
of Nuclear Fuel Powders of Varying Densities, pp. 857-870 in Thermal Conductivity. Proc.
Eighth Conf., C.Y. Ho and R.E. Taylor, eds. (Plenum Press, New York, 1969).

W.A. Plummer, D.E. Campbell, and A.A. Comstock, “Method of Measurement of Thermal
Diffusivity to 1000°C,” J. Amer. Ceram. Soc. 45, 310-316 (1962).

L.N. Dzhavadov, “Measurement of thermophysical properties of dielectrics under pressure,”
High Temperatures — High Pressures 7, 49-54 (1975).

R.E. Giedd and D.G. Onn, Electronic Flash: A Rapid Method for Measuring the Thermal
Conductivity and Specific Heat of Dielectric Materials, pp. 339-346 in Thermal Conductivity
20. Proc. 20" Intl. Thermal Conductivity Conf., D.P.H. Hasselman and J.R. Thomas, Jr.,
eds. (Plenum Press, New York, 1987).

L. Kubi¢ér, Pulse Method of Measuring Basic Thermophysical Parameters, Part E of Vol.
XII, Thermal Analysis, of Wilson and Wilson’s Comprehensive Analytical Chemistry, G.
Svehla, ed. (Elsevier, New York, 1990).

E. Piorkowska and A. Galeski, “Measurements of thermal conductivity of materials using
a transient technique. I. Theoretical background,” J. Appl. Phys. 60, 485-492 (1986).

E. Piorkowska and A. Galeski, “Measurements of thermal conductivity of materials using
a transient technique. II. Description of the apparatus,” J. Appl. Phys. 60, 493-498 (1986).

107




(This page is blank)

108



Appendix A. Analysis Procedures for Transient Hot-Wire or Probe
Techniques for Thermal Conductivity Measurement

Transient techniques for thermal conductivity measurement have been utilized with planar heat
sources, point or spherical heat sources, and cylindrical heat sources, In this appendix, attention is
confined to measurement systems utilizing a cylindrical geometry. For most of the analyses
discussed below, an infinitely long heat source is assumed. The end effects due to a finite source

length are briefly disct

A.1 Ideal Line Heat Source

The simplest analysis involves an ideal line heat source (i.e., a source of vanishing diameter) that is
turned on at zero time and thereafter produces a constant heat output. Apparatus used for
determining the thermal conductivity of liquids and gases usually approximates this ideal line heat
source quite closely, the heater wire, which also serves as a resistance thermometer, typically being
about 5 to 25 pm in diameter. Thin wire heaters also are frequently used for measuring the thermal
conductivity of thermal insulation, including refractory materials. For in-situ measurements of, for
example, soil thermal properties, a larger, more rugged probe is needed and it is necessary to account
for the finite size and thermal capacity of the probe, as well as for thermal contact resistance between
the probe and the surrounding medium. It is useful, however, to consider the analysis for an ideal
line heat source since that solution serves as a limiting form of the solution for a probe as its
diameter decreases and contact resistance becomes smaller.

In some implementations of the line heat source method, the temperature of the heater wire, or
slender probe, is measured. In other implementations, the temperature is measured in the
surrounding medium at some known radius from the axis of the heater or probe.

Following Carslaw and Jaeger [A1, pp. 261-262], we suppose heat to be released at the continuous
rate Q per unit time per unit length along the z-axis. If the heat supply begins at the time t =0, when
the medium is isothermal at a temperature T = 0, the temperature at a distance r from the z-axis is
given by

_ Qg
T 4rmA E, [ 4Kt] ’ )
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is the exponential integral, A is thermal conductivity, and k is thermal diffusivity.. For small values
of x, corresponding to small values of the radius r or large values of the time ¢, Eq. (2) reduces to
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where y = 0.577216... is Euler’s constant. For values of x sufficiently small that x is negligible
compared with {n x, the temperature is given simply by
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r
For measurements at a fixed value of r,
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where A is a constant whose value need not be known if only thermal conductivity is needed. Thus
the thermal conductivity can be computed from the strength of the heat source and the slope of a plot
of temperature versus the logarithm of time. Note that in using Eq. (5) to obtain thermal
conductivity, it is not necessary to specify the radius at which the temperature is measured, provided
the value of 4x¢/#” is large enough for Egs. (4) and (5) to be valid. If it is desired to use Eq. (4) to
compute thermal diffusivity values, it is necessary to know accurately the radius of the heater wire
or probe. As pointed out, e.g., by Nieto de Castro [A2-A3], with the very thin probes used for
measurements on fluids, and the very short times that are used in order to avoid convection effects,
it generally is not possible to obtain thermal diffusivity (or specific heat) values with anywhere near
the accuracy that is possible for thermal conductivity values.

For many investigations it is assumed that the line heat source probe is very thin and also very
conductive in the radial direction so that the temperature across the probe can be considered to be
constant at any given time. Under such conditions the temperature of the probe itself can be used
to determine the thermal conductivity, provided the heated section of the probe is also sufficiently
long, and of sufficiently low thermal conductance, that all of the power input to the portion of the
probe where the temperature is measured can be assumed to flow radially into the surrounding
medium whose thermal conductivity is to be determined.

Some investigators have used a two-wire or two-probe method in which the temperature is measured
by a sensor located at some distance away from the line heat source. Under such conditions the
value of 4k#/F is usually not large enough for Eq. (5) to be valid so that the thermal conductivity
needs to computed using Eq. (1).

A.2 Finite-Diameter Probe

Jaeger [A4; 2, pp. 344-345] has derived a solution for a finite-diameter probe, made of a perfect
conductor , with finite thermal contact resistance between the probe and the surrounding medium.
As above, the medium is assumed initially to be isothermal at T = 0 when the probe is energized at
the constant rate Q per unit time per unit length. The temperature of the probe is given by
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where
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and J, and Y, are the Bessel functions of the first and second kind, respectively, of order I. The
dimensionless parameters B, &, and T are defined as
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where the properties of the medium are thermal conductivity, A [W/mK], density, p [kg/m*], specific
heat, C [J/kg-K], and thermal diffusivity, x [m?/s]; the probe is of radius b [m]; § [J/m'K] is the
thermal capacity per unit length of the probe; and /2 [W/ m2-K] is the heat transfer coefficient between
the probe and the surrounding medium. The dimensionless parameter B is the ratio of the thermal
contact resistance, 1/h, at the probe-medium interface to the thermal resistance, b/A, of a layer of the
medium of thickness b. The dimensionless parameter  is twice the ratio of the thermal capacity of
a cylinder of the medium material of radius b to the thermal capacity of an equal length of the probe.
(Note that the probe could actually be a hollow cylinder, rather than a solid cylinder, with S being
the thermal capacity of the actual probe material present.) The parameter © is the usual
dimensionless time that is used in transient heat conduction problems, obtained by multiplying the
actual time by the ratio of the thermal diffusivity to the square of a characteristic dimension, in this
case the radius of the probe (this parameter T is often referred to as the Fourier number).

The integration shown in Eq. (7) cannot be carried out in closed form so it must be done numerically.
For small values of T, Jaeger [A4] shows that
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when # is infinite (perfect contact) so that = 0. For large values of t, Jaeger [A4] shows that
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For values of t sufficiently large that the last two terms, involving T, can be neglected, Eq. (12)
reduces to

1
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If the probe has a vanishingly small thermal capacity, so that - 0, Eq. (13) reduces to Eq. (4), the
expression for an ideal line source. Two features of Eq. (13) are worthy of note. First, for long
enough times, the thermal capacity of the probe is no longer a factor. Second, forlong enough times,
the effect of thermal contact resistance becomes independent of time so that one can compute
thermal conductivity from a plot of temperature versus the logarithm of time without having to know
either the thermal contact resistance or the thermal capacity of the probe. For a line heat source or
a very slender probe such as those used for laboratory measurements on loose-fill materials, it is
relatively easy to work in the region where Eq. (13) is valid. However, a probe for in-situ
measurements of the thermal properties of soils must be rugged enough, and thus large enough in
diameter, to be inserted 1 or 2 meters into the ground. Since T is inversely proportional to the square
of the radius of the probe, increasing the probe diameter by, say, an order of magnitude in order to
achieve adequate strength, reduces the values of T by two orders of magnitude. Thus, as is discussed
in more detail below, for the probes to be developed for this project, it is necessary to use
expressions that are more accurate than Eq. (13) for the values of 1 that are of concern.

It also is of interest to examine the behavior of Eq. (7) in the limit when & - . This limit
corresponds to the case where the probe is of finite diameter but has negligible thermal capacity.
Such a probe could be approximated by a very thin-walled hollow tube. As shown by Jaeger [A4],
forf=0and & - o,
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For finite values of thermal contact resistance (i.e., B > 0),
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it is seen that B only shows up with respect to the constant temperature drop between the probe and
the medium. Thus , for determinations of thermal conductivity, it is not necessary to know or to
determine the thermal contact resistance. Equation (14) is the same as the solution for an infinite
region with constant heat flux at r = a [Al, p. 338].

Blackwell [A5] derived, with very different notation, the equivalent solution to Es. (6)-(9). In his
short-time approximate solution, he included one more term that is given in Eq. (10); in our notation
itis
o o 8a
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Blackwell’s long-time approximation, with appropriate changes in notation agrees with Eq. (12),
above. Blackwell [A5] also considered the problem of a hollow cylindrical probe, having a finite
thermal conductivity, with heat supplied at the outer surface of the probe and the temperature
measured at the inner surface. He obtained large-time and short-time solutions that agreed with Eqgs.
(12) and (16), above but with the inclusion of correction terms that account for the temperature
difference between the inner and outer radii of the probe. As pointed out by Blackwell [A5] and by
Wechsler [A6], the corrections in Blackwell’s equations are quite small for well-designed probes.
Furthermore, in the long-time solution given by Blackwell the correction term for finite probe
thermal conductivity varies as T°' so that, for times long enough that Eq. (13) is valid, it drops out.

De Vries and Peck [A7] derived a long-time solution for a cylindrical probe, of finite thermal
conductivity, with an ideal line heat source at its axis. With appropriate change of variables, their
solution is identical to Eq. (12), with the addition of a term (-1/a) (A/Ap) 17!, where A, is the
thermal conductivity of the probe material, inside the square brackets. For a homogeneous probe,
this term reduces to (-1/2) (x/ K, y-t7', where K, is the thermal diffusivity of the probe material.
As with Blackwell’s solution, the correction term for finite probe conductivity is not needed for
times long enough that Eq. (13) can be used.

Christoffel and Calhaem [A8] give solutions, analogous to those of Carslaw [A4], for a perfectly
conducting probe with no contact resistance, a perfectly conducting probe with contact resistance,
and a probe having a finite thermal conductivity but no contact resistance. Although these authors
do not indicate where the heat source is, their solution for a probe having a finite thermal
conductivity appears to correspond to a probe heated at its outer surface. Their correction for finite
probe conductivity is similar to that of Blackwell, whose solution is for a probe with heat supplied
at its outer surface.
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Bruijn, et al. [A9] used a “modified Jaeger model,” which was a homogeneous solid cylindrical
probe having the same thermal capacity per unit length as the real probe and an effective thermal
contact resistance consisting of the contact resistance between the outer surface of the probe and the
surrounding medium and an internal thermal resistance computed between the position of the
temperature sensor and the outer radius of the probe. This internal resistance was computed for an
idealized probe, with the heater at the axis, surrounded by a hollow cylinder of electrically insulating
material (in which the temperature sensor was placed), and an outer metal cylinder. The internal
resistance was assumed to be that computed for steady-state radial heat flow in the idealized probe,
on the basis that the time constant of the probe is so short compared to the duration of a test that a
steady-state temperature profile would be established in the probe.

Bruijn, et al., also give equations for a “four-regions model,” consisting of coaxial cylinders: heating
wire, insulating material, tube, and medium to be measured. These equations were left in terms of
the Laplace-transformed temperatures and therefore are not suitable for use in data analysis.

Lin and Love [A10] give analytical solutions, similar to those of Jeager [A4] and of Blackwell [AS5],
for a system consisting of a probe, a well casing, and a surrounding medium. The probe and the well
casing are assumed to have infinite radial thermal conductivity. They investigate the cases with and
without thermal contact resistance at the interfaces and obtain integral solutions, large-time
approximate solutions, and small-time approximate solutions. While their results are valuable, the
extra complexity of three regions, rather than two, is not needed for the present project.

Bastian and Grosjean [A11] provide analytical solutions for probe consisting of a hollow pipe, open
at the ends, with the unique feature that the material being tested in situated both outside and inside
the probe.

All of the above theory was based on the assumption that the probe was infinite in length. In a
separate paper, Blackwell [A12] examined the errors due to axial heat flow in a finite-length probe
and provided guidelines for selecting a suitably long probe to avoid significant errors. Kierkus, et
al.,[A13] have examined end effects in conjunction with a line heat source method for fluids.

As indicated previously, most investigators have used a simple large-time solution, such as Eq. (5)
or (13), while a few investigators have used a somewhat more involved expression, such as Eq. (12).
Very few workers have used an integral expression, such as Egs. (6)-(9), that is valid over the entire
time range.

In conjunction with the Thermal Property Analyzer (TPA) developed for EPRI by workers at Ontario
Hydro [A14], a program was written that used a non-linear least squares fit to Blackwell’s model
[AS5] to obtain thermal diffusivity and thermal contact resistance from the temperature versus time
data, experimentally determined probe parameters (“effective probe radius” and probe thermal
capacity), soil thermal conductivity, and probe power. It is not evident why these investigators
elected to compute the thermal conductivity, separately, from the slope of the temperature-versus-
time curve, rather than to have the computer program determine thermal conductivity as well. It
appears that they computed thermal conductivity from the large-time data, where thermal diffusivity
(or heat capacity) of the soil and contact resistance would cause relatively little effect, and then
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computed the thermal diffusivity and contact resistance using small-time data. It would be preferable
to have the computer use the entire temperature-time history and obtain self-consistent values for
thermal conductivity, thermal diffusivity/heat capacity, and contact resistance. With the
microprocessors that were available two decades ago, these investigators had to use a simpler
approach for the software built into the TPA. They only used the non-linear curve fit program with
a mainframe computer.

At about the same time, investigators at Sandia National Laboratories developed equipment and data
analysis procedures [A15-A19] for using a probe method to determine the thermal conductivity of
powders at high temperatures. These workers used Jaeger’s analysis [A4], namely our Egs. (6)-(9),
(11), and (12), as well as finite element or finite difference techniques, to assist in designing their
probes. For data analysis, they used a non-linear least squares fit, or parameter estimation technique,
based on Jaeger’s analysis. There is a significant gap between the range of validity of the small-time
solution, Eq. (11), and that of the large-time solution, Eq. (12). There is an intermediate range of
© where neither solution even comes close to providing accurate results. The Sandia workers used
the full integral solution, our Egs. (6)-(9), for small and intermediate values of time and Eq. (12) for
large times. They carried out a numerical study to determine what values of t, for a given B and e,
to use for the transition from one solution to the other, so as to obtain good continuity in temperature
and its derivative with respect to time. (Discontinuity in either quantity, and particularly in the
derivative, can wreck havoc with a non-linear least squares fit.) Koski [A17] indicated that the
integral equation, our Eq. (7) proved difficult to integrate in a simple, rapid manner, particularly for
larger values of t, which is the reason they used the approximate solution for larger times.

A.3. Numerical Results

A FORTRAN program was written to compute values of G(f, &, t), using Egs. (6)-(9), (14), and
(15). Figure A1 shows G plotted versus T with & as a parameter for 3 =0, i.e., no contact resistance.
Considering first the ideal probe with no thermal capacity, i.e., & — o, it is seen that, in this semi-log
plot, the probe temperature curves rather slowly at small and medium times and asymptotically
approaches a straight-line for values of T greater than about 100, in accordance with Egs. (5) and
(13). Figure A1 includes curves corresponding to o = e, 100, 50, 20, 10, 5,2, 1,0.5,0.2, and 0.1
Although the curves for the larger values cannot be distinguished, Figure A2 shows that as the
thermal capacity of the probe approaches and then exceeds the thermal capacity of an equivalent
volume of the surrounding medium (e.g., soil), a significant time delay is introduced at earlier times.
When the contact resistance is zero, as in this case, or relatively small, the time lag due to a probe
having a thermal capacity approximately equal to that of the medium (i.e., B =2) actually results in
the curve of temperature versus the logarithm of time approaching a straight line more rapidly than
in the case where the probe has a very small thermal capacity. When the thermal capacity of the
probe greatly exceeds that of an equivalent volume of the medium, the probe temperature lags behind
until values of T of the order of 1000 are attained. Inspection of Fig. Al shows that if data over a
rather limited range of temperatures, say T going from 10 to 100, were used, it would be easy to be
fooled into thinking the “straight-line region™ had been reached but the slope thereby used to
compute thermal conductivity could be significantly in error.
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Figure A2 shows the same curves as those in Fig. 1, but plotted with a different vertical axis in order
to facilitate comparison with the next four figures. Figure A3 shows how the curves change when
contact resistance is present, in this case corresponding to f = 1 (i.e., the contact resistance is equal
to the resistance of a plane layer of the surrounding medium having a thickness equal to the radius
of the probe). For the case of a very light probe, with a ~ o, the contact resistance simply displaces
the temperature-time curve upward, as shown by Eq. (15). For probes having large thermal capacity,
the probe temperature cannot “jump” in response to the contact resistance so the temperature of such
probes initially increases slowly and then accelerates to “catch up” with the curve for probes having
very low thermal capacity. A potentially serious consequence of this behavior is that the curves of
temperature versus the logarithm of time can have deceptively linear regions that are much steeper
than the true final slope, thus exacerbating the potential error in thermal conductivity. Figures A4,
A5, and A6 show the computed temperature-time curves for larger contact resistances, with B = 2,
3, and 4, respectively. The effects discussed above in this paragraph are exaggerated further as
contact resistance increases.

The results shown in these figures clearly illustrate that great caution must be exercised in attempting
to use the large-time solutions, such as Eq. (12) or Eq. (13), to determine thermal conductivity. This
caution is required because the thermal capacity of the probe and the thermal contact resistance
between the probe and the surrounding medium can seriously distort the shape of the temperature-
time curve and result in serious measurement errors. The results in these figures also show that, for
a given probe, the temperature-time curve is sensitive to the thermal capacity of the medium during
the small and medium times but not at long times. Thus, if the heat capacity or the thermal
diffusivity of the soil is desired, it is necessary to use information from the early part of the curve;
these properties cannot be obtained from large-time data only. Finally, these curves and the above
discussion demonstrate the importance of using the complete curve of temperature versus the
logarithm of time if it is desired to obtain consistent, accurate values for thermal conductivity,
thermal diffusivity, heat capacity, and thermal contact resistance.
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Appendix B. Analysis Procedures for Transient Plane-Source
Techniques for Thermal Conductivity Measurement

The literature concerning analysis procedures for transient plane-source techniques for thermal
conductivity measurement is much less extensive than is the case for transient hot-wire or probe
techniques. In particular, there is less information available concerning the effects of the heat
capacity of the heater and the effects of contact resistance. Accordingly, as part of the development
of a suitable apparatus for use at NIST, appropriate mathematical models need to be developed and
programmed.

In this appendix, some of the mathematical models from the literature are briefly summarized. The
references cited in this appendix are those from Section 8.

Gustafsson’s Transient Strip Method [101-103]

Consider a thin strip heater of width 2d, sandwiched between two slabs of material having density
p, specific heat C, thermal conductivity A, and thermal diffusivity k = A/pC. The assembly is
initially isothermal and at time ¢ = O, the heater is energized with a constant electrical current,
resulting in a power input Q per unit length. To first order, the voltage drop V across the heater of
resistance R varies as

V o 2

Vv [ )LQ'g(Kt/d) , W
where V), is the voltage drop at ¢ = 0 across the heater of resistance R, o = (1/Ry) dR/dT is the
temperature dependence of the heater resistance, and g( ) is a mathematical function that is given by
Gustafsson. When d is very small, Eq. (1) reduces, for reasonable values of ¢, to an expression
equivalent to that given on p. A-2 for an ideal line heat source. The thermal conductivity can be
obtained but it is not possible to obtain an accurate value for either the thermal diffusivity or the
volumetric specific heat (pC). When d is very large, Eq. (1) reduces, again for reasonable values of
t, to the expression for an infinitely large plane heat source; the quantity known as the “effusivity,”
ApC = A*/x, can be obtained but it is not possible to obtain the individual thermophysical
properties. A bit more needs to be said about “reasonable values of ¢t 1If d is very small,
information about volumetric specific heat or thermal diffusivity could only be obtained for times
that are so short that the thermal wave has barely begun to penetrate the test medium and further, so
short that it would be difficult to make accurate measurements of the variation in the voltage drop
across the heater. If d is very large, information about individual thermophysical properties could
only be obtained for times that are so long that the assumptions of an infinitely large medium with
negligible heat losses would not be valid. Gustafsson argues that if d is chosen so that, for
reasonable times, the maximum argument of g( ) is approximately unity, it is possible to obtain
reliable values for pC, A, and k from a single experiment.

As mentioned above, Eq. (1) is a first-order expression. Gustafsson [103] also has derived a second-
order expression for the time dependence of the voltage drop across the heater.
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Brydsten and Biickstrom Hot Strip Method [104]

As described on p. 79, Brydsten and Béckstrom used one strip as a heater and a second strip as a
thermometer. Their first-order mathematical analysis results in an expression analogous to Eq. (1)
of this appendix, but with a different form for g(). The use of a separate thermometer should make
it possible to obtain reliable values for pC, A, and k from a single experiment with less restriction
on the width of the heater strip than is the case for Gustafsson’s method; however, it would be
necessary to carry out computations to confirm this supposition.

Gustafsson’s Transient Plane Source Method [105-106]

As briefly described on p. 80, this technique uses a rectangular or circular patch heater, resembling
a resistance strain gage, that also serves as a thermometer. Again the functional form of the first-
order expression for the voltage drop across the heater is similar to Eq. (1) of this appendix, with a
different form for g( ), depending upon the heater geometry.

Vernotte’s Method [107-113]

There are several computational techniques presented in these papers. The technique originally used
by Clarke and Kingston [107] is similar to that described below for Harmathy’s method. Since it
is not planned to use Vernotte’s method for this project, the various computational techniques are
not summarized here.

Harmathy’s Method [121-125]

As described on pp. 82-83, Harmathy [121] used a heater that had essentially the same lateral
dimensions as the specimen pieces so that, in contrast to Gustafsson’s and Brydsten and Backstrom’s
methods, he obtained essentially one-dimensional heat flow. Neglecting the heat capacity of the
heater and neglecting thermal contact resistance, Harmathy used a standard formula for the
temperature rise, T, at position z in an infinite solid with constant heat flux in the z = 0 plane,

]
1—2) g 2)

Kt

where P/2 is the heat flux into one specimen, of the pair, and ierfc( ) is the integrated complimentary
error function. If the temperature rise at the heater were to be measured, Eq. (2) would reduce to

1 1
r-Px)z_pf )3 3
AT TApC

and, as discussed following Eq. (1), it is only possible to determine the effusivity and not any of the
normally defined thermophysical properties. This problem does not arise, however, if the
temperature is measured at a sufficiently large distance from the location of the heater. Harmathy
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let z = 0, the thickness of the “measuring piece,” as shown in Figures 59 and 60 of this report, wrote
two equations of the form of Eq. (2), one at time ¢ and the other at time 2¢, and formed the ratio

i )3
y2 lerfc —| — 2
2

T2 _ 2Kt 4
T 1 ( 02]1 “)
jerfc — | —| 2
2\ xt

He computed this function and compared it to the experimental data in order to obtain x and then
inserted that value of k into Eq. (2) to compute A. With modern computers, it would probably be
simpler to use non-linear parameter estimation techniques.

Pulse Methods [127-129]

For an instantaneous planar heat pulse in an infinite body, the resultant temperature at a distance {
from the heat source is given by [129]

T:

o5
~exp| - Q)

2pC\/TE—Kt 4kt

where H is the energy per unit area provided by the heater. This function has the form shown on the

right-hand-side of Figure 62, on p. 84. The maximum temperature 7,, occurs at the time 7, when

xt/02 =1/2, and thus k can be computed from

K = . (6)

Substitutingx¢/¢> =1/2 into Eq. (5), the value of the maximum temperature is given by

H
Ty = ——— (7
v2me lpC

so that the volumetric heat capacity can be computed from

I . H 040 @)

R Te QTm QTm

pC =

The thermal conductivity is then computed from A = xpC.



If the pulse length is not short compared to t,,, it is necessary to use a more complicated expression,
than Eq.(5), that properly accounts for the pulse shape and duration. Kubi¢ar [129] addresses this
issue as well as the effects of the heat capacity of the heater, thermal contact resistances, and heat
losses from the edge of the specimen.

Dzhavadov [127] obtains expressions analogous to those above. However, his specimens were not
treated as infinite bodies (see Figure 61, on p. 84 of this report) and the pulse width was not
negligible.

Giedd and Onn [128] used thin specimens and assumed that there was no heat loss from these
specimens. Thus their theoretical temperature-time histories do not go through a maximum but
rather asymptotically approach a constant value. They compute thermal diffusivity from the time
required for the backside temperature to reach half of its final value. Specific heat is computed from
the overall rise in temperature of the specimen when it reaches its final isothermal equilibrium value.

Piorkowska and Galeski’s Continuous Ramp Method [130-131]

Since it is proposed to use a variant of this method for the high-strength concrete project, it is
worthwhile to provide some detail as to the analysis procedure used by Piorkowska and Galeski.
Consider a pair of specimens, each of thickness ¢, with a thin heater between them at z = (. The
heater is assumed to have negligible heat capacity and there is assumed to be no thermal contact
resistance between the heater and the specimens. At the beginning of a test, it is assumed that the
outside surfaces of the specimens, z =0 and z = 2{ are at a temperature 7 = 0 and that the heater has
been providing a constant heat flux P for a sufficiently long time that steady-state conditions have
been achieved. Thus the initial conditions are

Pz
T(z,0) = — for 0 < z < ¢
(z,0) 7
)
and T(z,0) = % for 0 <z <20

At time ¢ = 0, the outer surfaces of the specimens are programmed to change in temperature
according to

10,1 = TQ20,0) = vt , (10)

where v is the constant rate of change of temperature with time. As shown by Piorkowska and
Galeski, the resultant temperature distribution within the lower specimen, 0 < z < ¢, will be

T(x,t) = % + vt -vF(x,t) (11)

with a similar expression for the other specimen, except that the leading term is replaced by the
second line of Eq. (9). The function F(x,?) is given by
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Evaluating Eq. (11) at z =0 and z = {, the temperature difference across each of the samples is

2 2 .= _1h\n 2.2
PL v 16w -1) exp(_(2n+l)nl<t) 1)

AT(t) = — - —
24 2k K1 n-0 (2n +1)° 402

Note that only the first term in this equation involves the power to the heater. Thus if two tests are
run with the same value for v but different values for P, say P, and P,, and the corresponding values
of the temperature difference across the specimen, AT, and AT,, are subtracted from each other, the
second and third terms cancel leaving simply

(P, - P)t
AT () - AT,(1) = — 5 a constant . (14)

Thus the thermal conductivity can be computed from

(P, - P)I

A= .
2[AT,(1) - AT,(1)] (13)

Piorkowska and Galeski also show that Egs. (14) and (15) are valid when the thermal conductivity
and thermal diffusivity are functions of temperature.

Although Piorkowska and Galeski do not discuss the determination of thermal diffusivity, it also is
straightforward to compute. The simplest case would be to consider Eq. (13) at times long enough
that the transient third term has died out enough to be negligible. The thermal diffusivity is then
given by

vi?

2(ﬂ . AT(t)] (16)
2h

K =

where the value of A computed from Eq. (15) can be substituted. However, for a test with no power
to the heater, k is given simply by

vi?

2 AT()

(7

where AT(?) is simply the amount that the temperature at the heater lags the temperature at the two
outer surfaces of the specimens when they are heated according to 7 = vz.
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in spalling of the concrete. Computer models for prediction of temperature and pore pressure distributions in heated concrete
typically include consideration of (1) mass transfer of air and water by diffusion and by forced convection, conversion of liquid
water to vapor, and release of water of hydration and (2) heat transfer by conduction, mass diffusion, and forced convection.
In order to make valid predictions, the computer models require reliable data as to the physical properties of the concrete. Mass
transport properties are being investigated by the Building Materials Division. Thermal transport properties, the subject of this
report, are being investigated by the Building Environment Division. The present report addresses (1) identification of materials
properties critical to prediction of heat and mass transfer in high strength concrete at high temperatures, (2) variation of the
thermal properties with temperature, pressure, and thermal history, (3) examination of correlations between concrete
composition and thermal properties.
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